Natural Numbers

We will pay special attention to the definition of natural numbers because it will be our foundation for number theory. Our axioms are chosen based on second-order arithmetic, following Robinson's axioms for numberhood and Frege's axioms for cardinality.

Numberhood

Zero is a natural number. In fact, the natural numbers are zero and the successors.

NameStatement
ax-nat-noli no kacna'u
ax-succ-stdro da poi ke'a kacna'u ku'o zo'u ga da du li no gi su'o de zo'u de kacli'e da

Zero is not a successor. Combined with the above axioms, this constrains the natural numbers to a single tower of successors above zero.

NameStatement
ax-succ-zeronaku ko'a kacli'e li no

While many results do not require it, we also have the Axiom of Successors, which states that the operator/function taking each natural number to its successor is injective.

NameStatement
ax-baihei-injganai li bai'ei ku'i'a du li bai'ei ku'i'e gi li ku'i'a du li ku'i'e

Induction over natural numbers is definable in second-order logic.

NameStatement
ax-nat-indganai ge li no bo'a gi ro da poi ke'a bo'a ku'o zo'u su'o de zo'u ge da kacli'e de gi de bo'a gi ro da poi ke'a kacna'u ku'o zo'u da bo'a

Addition

Addition is given via standard axioms.

NameStatement
ax-plus-zeroli su'i ku'i'a no du li ku'i'a
ax-plus-succli su'i ku'i'a bai'ei ku'i'e du li bai'ei su'i ku'i'a ku'i'e

We have not proven many arithmetic results yet.

NameStatement
1p0e1li su'i pa no du li pa

Multiplication

Multiplication is also given via standard axioms.

NameStatement
ax-mul-zeroli pi'i ku'i'a no du li no
ax-mul-succli pi'i ku'i'a bai'ei ku'i'e du li su'i pi'i ku'i'a ku'i'e ku'i'a

Ordering

The natural numbers are totally ordered. This order is not realized on its own, but defined recursively.

NameStatement
ax-gt-zeronaku ko'a kacme'a li no
df-kacmehago ko'a kacme'a ko'e gi su'o da poi ke'a kacli'e ko'a zo'u ga da kacme'a ko'e gi da du ko'e

Cardinality

We also have some axioms of Fregean cardinality.

NameStatement
ax-card-funganai ko'a .e ko'e kazmi ko'i gi ko'a du ko'e
ax-card-exgo li no kazmi pa ka ce'u bo'a kei gi naku su'o da zo'u da bo'a