Non-Logical Connectives
This section is about set theory, which we will frame as the study of
{cmima}
. {cmima}
is our first example of a non-logical connective; it
is a way of assembling bridi which cannot be reduced to mere definitions and
so cannot be defined purely as a relation between logically-defined bridi.
Traditionally, set theorists study elementhood, which we express with
{cmima}
. There is also the notion of subset, expressed in our database
with the CLL-era irregular lujvo {gripau}
, which is more amenable to
structural study.
Elementhood
First, we mention elementhood, traditionally studied through a collection of
axioms known as ZF
(WP,
nLab). ZF is often combined with an Axiom
of Choice, which we will discuss later; the reader is advised to carefully note
the distinction between "ZF" and "ZFC". We study two selbri, {cmima}
and
{zilcmi}
, which represent inhabited sets and all sets respectively.
We present the following subset of ZF, containing Axioms of Empty Set, Pairing, and Union:
Name | Statement |
---|---|
df-nomei | naku zo'u ko'a cmima le nomei ku |
df-ce | go ko'a cmima ko'e ce ko'i gi ga ko'a du ko'e gi ko'a du ko'i |
df-johe | go ko'a cmima ko'e jo'e ko'i gi ko'a cmima ko'e .a ko'i |
And also extensionally define a fair number of selbri in terms of {cmima}
:
Name | Statement |
---|---|
df-zilcmi | go ko'a zilcmi gi ga ko'a du le nomei ku gi su'o da zo'u da cmima ko'a |
Subsets
Next, we consider subsets. By defining subsets in terms of elementhood, we can establish that the subset relation is reflexive and transitive.
Name | Statement |
---|---|
gripau-refl | ko'a gripau ko'a |
gripau-trans | ko'a gripau ko'e & ko'e gripau ko'i ⇒ ko'a gripau ko'i |
Internal Homs
This section is also the earliest that we can define the first Lojban
abstractor, {ka}
, which relates a selbri to the various terbri which
combine with it to form a complete bridi. This is essential for building the
so-called internal homs (WP,
nLab), which will allow us to
treat selbri as terbri.
We use this to define many classic gismu. Here are some examples:
Name | Statement |
---|---|
df-ckaji | go ko'a ckaji pa ka ce'u bo'a kei gi ko'a bo'a |
df-ckini | go ko'a ckini ko'e pa ka ce'u bu'a ce'u kei gi ko'a bu'a ko'e |
And we can combine those with {cmima}
to define more gismu:
Name | Statement |
---|---|
df-steci | go ko'a steci ko'e ko'i gi ge ko'e ckaji ko'a gi ko'e cmima ko'i |
df-mupli | go ko'a mupli ko'e ko'i gi ge ko'a ckaji ko'e gi ko'a cmima ko'i |
df-simxu | go ko'a simxu ko'e gi ro da zo'u ro de zo'u ganai da .e de cmima ko'a gi da ckini de ko'e |
df-kampu | go ko'a kampu ko'e gi ro da poi ke'a cmima ko'e ku'o zo'u da ckaji ko'a |
This section also includes a definition of {du'u}
, which further internalizes
logic by allowing us to treat bridi as terbri.
Name | Statement |
---|---|
df-fatci | go pa du'u broda kei fatci gi broda |
df-nibli | go pa du'u broda kei nibli pa du'u brode kei gi ganai broda gi brode |
df-sigda | pa du'u ganai broda gi brode kei sigda pa du'u broda kei pa du'u brode kei |
df-tsida | pa du'u go broda gi brode kei tsida pa du'u broda kei pa du'u brode kei |
df-kanxe | pa du'u ge broda gi brode kei kanxe pa du'u broda kei pa du'u brode kei |
df-vlina | pa du'u ga broda gi brode kei vlina pa du'u broda kei pa du'u brode kei |
df-nalti-ana | pa du'u broda kei nalti pa du'u naku zo'u broda kei |
df-nalti-kata | pa du'u naku zo'u broda kei nalti pa du'u broda kei |
At this point we can explain the main issue with using abstractors as our
basis: terbri cannot be manipulated as generic syntax. It's not obvious how
to do manipulations with gismu like {nibli}
which operate upon {du'u}
abstractions. As such, we prefer {ka}
abstraction over {du'u}
abstraction
when manipulating syntax. The situation is not dire, merely unclear and
difficult; theorems like nibli-refl have been proven without any fancy
techniques. But we will need some fancy techniques, like…
Proper Substitution
Manipulation of bridi is getting tiresome, so we introduce the first — and
hopefully only — genuinely new metasyntax in all of la brismu: proper
substitution. It is a fairly weak mechanism that only allows us to replace any
first-order quantified variable, like {da}
, but we may replace it with any
grammatical {ko'a}
. Theorems about proper substitution are extremely powerful
but take effort to prove; our listing of them is currently fairly short.
Name | Statement |
---|---|
subid | go [ da / da ] broda gi broda |
Not-Free Quantification
We also include a quantifier not in baseline Lojban, {na'a'u}
, which asserts
that a quantified variable is irrelevant to the bridi over which it scopes.
It is not a common feature of most logics, but is used in other Metamath
databases to ease the implementation of proper substitution. A noteworthy
theorem here is ceihi-nf, which demonstrates that {cei'i}
really is a
nullary relation in semantics and not merely an aesthetic choice of our syntax.