| brismu bridi |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > Home > Th. List > gripau-trans | |||
| Description: {gripau} is transitive. (Contributed by la korvo, 19-Jul-2024.) |
| Ref | Expression |
|---|---|
| gripau-trans.0 | ⊢ ko'a gripau ko'e |
| gripau-trans.1 | ⊢ ko'e gripau ko'i |
| Ref | Expression |
|---|---|
| gripau-trans | ⊢ ko'a gripau ko'i |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | gripau-trans.0 | . . . 4 ⊢ ko'a gripau ko'e | |
| 2 | 1 | gripauis 335 | . . 3 ⊢ ganai ko'o cmima ko'a gi ko'o cmima ko'e |
| 3 | gripau-trans.1 | . . . 4 ⊢ ko'e gripau ko'i | |
| 4 | 3 | gripauis 335 | . . 3 ⊢ ganai ko'o cmima ko'e gi ko'o cmima ko'i |
| 5 | 2, 4 | syl 21 | . 2 ⊢ ganai ko'o cmima ko'a gi ko'o cmima ko'i |
| 6 | 5 | gripauris 337 | 1 ⊢ ko'a gripau ko'i |
| Colors of variables: sumti selbri bridi |
| Syntax hints: cmima sbcmima 319 |
| This theorem was proved from axioms: ax-mp 10 ax-k 11 ax-s 15 ax-ge-le 48 ax-ge-re 49 ax-ge-in 50 |
| This theorem depends on definitions: df-go 83 df-na.a 110 df-se 213 df-gripau 332 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |