| brismu bridi |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > Home > Th. List > syl | |||
| Description: The quintessential syllogism. This inference is a standard workhorse for producing deductive forms. In terms of category theory, it composes arrows. (Contributed by la korvo, 30-Jul-2023.) |
| Ref | Expression |
|---|---|
| syl.0 | ⊢ ganai broda gi brode |
| syl.1 | ⊢ ganai brode gi brodi |
| Ref | Expression |
|---|---|
| syl | ⊢ ganai broda gi brodi |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | syl.0 | . 2 ⊢ ganai broda gi brode | |
| 2 | syl.1 | . . 3 ⊢ ganai brode gi brodi | |
| 3 | 2 | ki 12 | . 2 ⊢ ganai broda gi ganai brode gi brodi |
| 4 | 1, 3 | mpd 18 | 1 ⊢ ganai broda gi brodi |
| Colors of variables: sumti selbri bridi |
| Syntax hints: ganai bgan 9 |
| This theorem was proved from axioms: ax-mp 10 ax-k 11 ax-s 15 |
| This theorem is referenced by: sd 22 sylcom 24 kd 27 syl2im 33 ge-led 52 ge-red 54 go-ganaid 91 sylbi 104 sylib 105 sylibr 106 ga-lid 177 ga-rid 178 se-dual 217 se-dual-l 218 se-dual-r 219 se-ganaii 220 se-ganair 221 spec1d 230 spec1s 231 alrimih 238 ro1-coms 248 sdod 283 efqd 286 stewart 296 gripau-trans 339 te-dual 401 te-dual-l 402 te-dual-r 403 te-ganaii 404 te-ganair 405 eximdh 428 foml19.29 429 foml19.41 432 equs4 453 stdpc4 455 subh 456 mapti-ckini 709 |
| Copyright terms: Public domain | W3C validator |