| brismu bridi |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > Home > Th. List > spec1s | |||
| Description: Generalize an antecedent. (Contributed by la korvo, 8-Jul-2025.) |
| Ref | Expression |
|---|---|
| spec1s.0 | ⊢ ganai broda gi brode |
| Ref | Expression |
|---|---|
| spec1s | ⊢ ganai ro da zo'u broda gi brode |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ax-spec1 228 | . 2 ⊢ ganai ro da zo'u broda gi broda | |
| 2 | spec1s.0 | . 2 ⊢ ganai broda gi brode | |
| 3 | 1, 2 | syl 21 | 1 ⊢ ganai ro da zo'u broda gi brode |
| Colors of variables: sumti selbri bridi |
| Syntax hints: ro brd 222 |
| This theorem was proved from axioms: ax-mp 10 ax-k 11 ax-s 15 ax-spec1 228 |
| This theorem is referenced by: exim 426 |
| Copyright terms: Public domain | W3C validator |