Home
brismu bridi
Theorem List (Table of Contents)
< Wrap
Next >
Mirrors
>
Metamath Home Page
>
Home Page
> Theorem List Contents
This page:
Detailed Table of Contents
Page List
Table of Contents Summary
PART 1 LOGICAL CONNECTIVES
1.1 Basic syntax
1.2 Implication I: {ganai}
1.3 Conjunctions I: {ge}
1.4 Biconditionals I: {go}
1.5 Implication II
1.6 Conjunctions II
1.7 Disjunctions: {ga}, {.a}, {ja}, {gi'a}
1.8 Biconditionals II
1.9 Conversion I: {se}
1.10 Universal quantifiers I: {ro}
1.11 Identity: {du}
1.12 Boolean predicates: {cei'i}
1.13 Negation I: {gai'o}, {naku}
1.14 Mutual exclusion I
1.15 Extra connectives
PART 2 NON-LOGICAL CONNECTIVES
2.1 Sets I: {nomei}, {pamei}
2.2 Subsets
2.3 Internal hom I
2.4 Conversion II: {te}
2.5 Pairing: {ce}
2.6 Existential quantifiers I: {su'o}
2.7 Substitution
2.8 Not-free quantification
2.9 Sets II: {zilcmi}
2.10 Relative clauses I: {poi}, {ke'a}, {ku'o}
2.11 Internal hom II: {kampu}
2.12 Union: {jo'e}
2.13 Intersection: {ku'a}
2.14 Internal bridi
2.15 Parallel reasoning: {fa'u}
2.16 Deletion: {zi'o}
2.17 Properties of relations
2.18 Existential quantifiers II: {pa da}
PART 3 NUMBERS
3.1 Natural numbers
3.2 Exponents I: {tenfa}
3.3 Logarithms: {dugri}
3.4 Cardinality
PART 4 MEREOLOGY
4.1 Parthood
PART 5 SPACE & SPACETIME
5.1 Two-dimensional Euclidean space
5.2 Three-dimensional Euclidean space
5.3 Minkowski spacetime
PART 6 RELATIONAL LOGIC
6.1 Lattice of relations
6.2 Functions I
6.3 Assorted claims
6.4 Ontological classes
6.5 Generated baseline ontology
Detailed Table of Contents
(* means the section header has a description)
*PART 1 LOGICAL CONNECTIVES
*1.1 Basic syntax
*1.2 Implication I: {ganai}
1.3 Conjunctions I: {ge}
1.4 Biconditionals I: {go}
*1.5 Implication II
1.5.1 {na.a}
sjnaa
77
1.5.2 {.anai}
sjanai
83
1.5.3 {naja}
sbnaja
88
1.5.4 {janai}
sbjanai
94
1.5.5 {nagi'a}
tnagiha
99
1.5.6 {gi'anai}
tgihanai
104
1.6 Conjunctions II
1.6.1 More facts about {ge}
ge-com-lem
109
1.6.2 {.e}
sje
114
1.6.3 {je}
sbje
118
1.6.4 {gi'e}
tgihe
122
*1.7 Disjunctions: {ga}, {.a}, {ja}, {gi'a}
1.7.1 {ga}
bga
127
1.7.2 {.a}
sja
138
1.7.3 {ja}
sbja
144
1.7.4 {gi'a}
tgiha
148
1.8 Biconditionals II
1.8.1 {.o}
sjo
152
1.8.2 {jo}
sbjo
159
1.8.3 {gi'o}
tgiho
163
1.9 Conversion I: {se}
1.10 Universal quantifiers I: {ro}
1.11 Identity: {du}
1.12 Boolean predicates: {cei'i}
*1.13 Negation I: {gai'o}, {naku}
*1.14 Mutual exclusion I
1.14.1 {gonai}
bgon
224
1.14.2 {.onai}
sjonai
230
1.14.3 {jonai}
sbjonai
234
1.14.4 {gi'onai}
tgihonai
238
1.15 Extra connectives
1.15.1 {ginai}
bgagin
242
*PART 2 NON-LOGICAL CONNECTIVES
2.1 Sets I: {nomei}, {pamei}
2.1.1 {cmima}
sbcmima
246
2.1.2 {nomei}
snomei
249
2.1.3 {pamei}
sbpamei
252
2.2 Subsets
2.2.1 {gripau}
sbgripau
257
*2.3 Internal hom I
2.3.1 {ka}
sc
266
2.3.2 {ckaji}
sbckaji
268
2.3.3 {ckini}
sbckini
273
2.3.4 {sefsi}
sbsefsi
279
2.3.5 {simsa}
sbsimsa
281
2.3.6 {dunli}
sbdunli
290
2.3.7 {mintu}
sbmintu
297
2.3.8 {steci}
sbsteci
306
2.3.9 {mupli}
sbmupli
311
2.3.10 {simxu}
sbsimxu
318
2.4 Conversion II: {te}
2.5 Pairing: {ce}
2.6 Existential quantifiers I: {su'o}
2.7 Substitution
2.8 Not-free quantification
2.9 Sets II: {zilcmi}
2.9.1 {zilcmi}
sbzilcmi
366
2.10 Relative clauses I: {poi}, {ke'a}, {ku'o}
2.10.1 {po'u}
brdpu
381
2.11 Internal hom II: {kampu}
2.11.1 {kampu}
sbkampu
383
2.12 Union: {jo'e}
2.12.1 {jo'e}
sjohe
387
2.13 Intersection: {ku'a}
2.13.1 {ku'a}
skuha
391
*2.14 Internal bridi
2.14.1 {du'u}
sdu
395
2.14.2 {bridi}
sceho
396
2.14.3 {fatci}
sbfatci
404
2.14.4 {nibli}
sbnibli
409
2.14.5 {sigda}
sbsigda
415
2.14.6 {tsida}
sbtsida
417
2.14.7 {kanxe}
sbkanxe
419
2.14.8 {vlina}
sbvlina
421
2.14.9 {nalti}
sbnalti
423
2.15 Parallel reasoning: {fa'u}
2.15.1 {fa'u}
sfahu
426
2.16 Deletion: {zi'o}
*2.17 Properties of relations
2.17.1 Transitivity: {takni}
sbtakni
436
2.17.2 Symmetry: {kinfi}
sbkinfi
439
2.17.3 Reflexivity: {kinra}
sbkinra
442
2.17.4 Euclidean: {efklipi}, {efklizu}
sbefklipi
448
2.18 Existential quantifiers II: {pa da}
2.18.1 Magmas: {klojere}
sbklojere
462
2.18.2 Semigroups: {kloje}
sbkloje
464
2.18.3 Monoids: {sezni}
sbsezni
466
*PART 3 NUMBERS
*3.1 Natural numbers
3.1.1 Zero: {li no}
sli
469
3.1.2 Successor I: {bai'ei}, {kacli'e}
mbaihei
472
3.1.3 Natural number predicate: {kacna'u}
bkacnahu
485
3.1.4 Successor II
ax-succ-succ
488
3.1.5 Addition I: {su'i}
msuhi
495
3.1.6 Addition II: {sumji}
bsumji
499
3.1.7 Multiplication I: {pi'i}
mpihi
503
3.1.8 Multiplication II: {pilji}
bpilji
506
3.1.9 Comparison I: {kacme'a}
bkacmeha
510
3.2 Exponents I: {tenfa}
3.3 Logarithms: {dugri}
3.4 Cardinality
3.4.1 {ka'au}
mkahau
519
3.4.2 {kazmi}
sbkazmi
520
*PART 4 MEREOLOGY
4.1 Parthood
4.1.1 {pagbu}
sbpagbu
525
4.1.2 {jompau}
sbjompau
534
4.1.3 {kuzypau}
sbkuzypau
538
PART 5 SPACE & SPACETIME
5.1 Two-dimensional Euclidean space
5.1.1 Compass directions
sbberti
542
5.2 Three-dimensional Euclidean space
5.2.1 Spatial directions
sbcrane
548
5.3 Minkowski spacetime
5.3.1 {cabna}
sbcabna
557
5.3.2 {xlane}
sbxlane
559
5.3.3 {balvi}, {purci}
sbbalvi
561
PART 6 RELATIONAL LOGIC
6.1 Lattice of relations
6.1.1 {ki'irni'i}
sbkihirnihi
564
6.1.2 {ki'irkanxe}
sbkihirkanxe
569
6.1.3 {ki'irvlina}
sbkihirvlina
571
6.2 Functions I
6.2.1 {fancu}
sbfancu
573
6.2.2 {pagyfancu}
sbpagyfancu
577
6.3 Assorted claims
6.3.1 {mapti}
sbmapti
579
6.3.2 {drata}
sbdrata
582
6.3.3 {frica}
sbfrica
584
6.3.4 {nenri}
sbnenri
586
6.3.5 {fatne}
sbfatne
588
6.3.6 {rinka}
sbrinka
590
6.4 Ontological classes
*6.4.1 Colors: {skari}
sbskari
592
6.4.2 Families: {lanzu}
sblanzu
597
6.5 Generated baseline ontology
6.5.1 Classes of selbri
ax-skaselbri-blabi
655
6.5.2 Subrelations between selbri
ax-since-respa
723
< Wrap
Next >
Page List
Jump to page: Contents
1
1
-
100
2
101
-
200
3
201
-
300
4
301
-
400
5
401
-
500
6
501
-
600
7
601
-
700
8
701
-
774
Copyright terms:
Public domain
< Wrap
Next >