Home | brismu
bridi Theorem List (p. 3 of 8) |
< Previous Next >
|
Mirrors > Metamath Home Page > Home Page > Theorem List Contents This page: Page List |
Type | Label | Description |
---|---|---|
Statement | ||
Theorem | duris 201 | Sugared reverse inference form of df-du 197 (Contributed by la korvo, 23-Jun-2024.) |
⊢ go ko'a bu'a gi ko'e bu'a ⊢ ko'a du ko'e | ||
Theorem | du-refl 202 | {du} is reflexive. (Contributed by la korvo, 16-Aug-2023.) (Shortened by la korvo, 23-Jun-2024.) |
⊢ ko'a du ko'a | ||
Theorem | du-trans 203 | {du} is transitive. (Contributed by la korvo, 16-Aug-2023.) (Shortened by la korvo, 23-Jun-2024.) |
⊢ ko'a du ko'e ⊢ ko'e du ko'i ⊢ ko'a du ko'i | ||
Theorem | du-sym 204 | {du} is symmetric. (Contributed by la korvo, 16-Aug-2023.) (Shortened by la korvo, 23-Jun-2024.) |
⊢ ko'a du ko'e ⊢ ko'e du ko'a | ||
Theorem | se-du-elim 205 | {se du} may be replaced with {du}. Theorem Cat.Allegory.Base.dual-id in [1Lab] p. 0. (Contributed by la korvo, 9-Jul-2023.) |
⊢ ko'a se du ko'e ⊢ ko'a du ko'e | ||
Syntax | bceihi 206 |
|
bridi cei'i | ||
Definition | df-ceihi 207 | The predicate which is always true. Note that both sides are relational: the left-hand side definitionally only has one inhabitant, so this definition asserts that {ko'a du ko'a} is only true via one path. |
⊢ go cei'i gi ko'a du ko'a | ||
Theorem | ceihi 208 | {cei'i} is always true. (Contributed by la korvo, 18-Jul-2023.) |
⊢ cei'i | ||
Lojban classically contains a {na} which may slide around in a prenex and between connectives. To be constructive, we will more carefully introduce {naku} negation within the prenex first, and then justify various simplifications and rearrangements. | ||
Syntax | bgaiho 209 |
|
bridi gai'o | ||
Syntax | bnk 210 | Syntax for negation over an empty row of quantifiers. |
bridi broda bridi naku zo'u broda | ||
Definition | df-naku 211 | Traditional definition of intuitionistic negation. |
⊢ go naku zo'u broda gi ganai broda gi gai'o | ||
Theorem | naku-uncur 212 | Uncurried form of df-naku 211 (Contributed by la korvo, 20-Aug-2023.) |
⊢ ganai ge naku zo'u broda gi broda gi gai'o | ||
Theorem | lnc 213 | The law of non-contradiction. No bridi is simultaneously inhabited and uninhabited. (Contributed by la korvo, 19-Sep-2024.) |
⊢ naku zo'u ge naku zo'u broda gi broda | ||
Theorem | lnci 214 | The law of non-contradiction. If a bridi is simultaneously inhabited and uninhabited, then we reach an absurdity. (Contributed by la korvo, 20-Aug-2023.) |
⊢ ge broda gi naku zo'u broda ⊢ gai'o | ||
Theorem | nakui 215 | Inference form of df-naku 211 (Contributed by la korvo, 9-Aug-2023.) |
⊢ naku zo'u broda ⊢ ganai broda gi gai'o | ||
Theorem | nakuii 216 | Inference form of df-naku 211 (Contributed by la korvo, 9-Aug-2023.) |
⊢ naku zo'u broda ⊢ broda ⊢ gai'o | ||
Theorem | nakuri 217 | Reverse inference form of df-naku 211 (Contributed by la korvo, 9-Aug-2023.) |
⊢ ganai broda gi gai'o ⊢ naku zo'u broda | ||
Theorem | na-gaiho 218 | {gai'o} is uninhabited. (Contributed by la korvo, 9-Aug-2023.) |
⊢ naku zo'u gai'o | ||
Axiom | ax-sdo 219 | The principle of self-defeating objects. If an object's existence would imply that it doesn't exist -- usually via contradiction -- then it doesn't exist. As a special case, if some tuple's membership in a relation would imply non-membership in that relation, then it's not a member. For a survey of this principle across maths, see [Tao]. Axiom ax-in1 in [ILE] p. 0. |
⊢ ganai ganai broda gi naku zo'u broda gi naku zo'u broda | ||
Theorem | sdoi 220 | Inference form of ax-sdo 219 (Contributed by la korvo, 9-Aug-2023.) |
⊢ ganai broda gi naku zo'u broda ⊢ naku zo'u broda | ||
Axiom | ax-efq 221 | The principle of explosion. If a tuple both is and is not a member of some relation, then we are inconsistent and any theorem whatsoever may be derived. The short name "efq" comes from the Latin phrase, "ex falso quodlibet". |
⊢ ganai naku zo'u broda gi ganai broda gi brode | ||
Theorem | efqi 222 | Inference form of ax-efq 221 (Contributed by la korvo, 25-Jun-2024.) |
⊢ naku zo'u broda ⊢ ganai broda gi brode | ||
Theorem | efqii 223 | Inference form of ax-efq 221 (Contributed by la korvo, 25-Jun-2024.) |
⊢ naku zo'u broda ⊢ broda ⊢ brode | ||
The final of our five essential connectives. As with disjunctions, we can introduce all versions of mutual exclusion at once. | ||
Syntax | bgon 224 |
|
bridi gonai broda gi brode | ||
Definition | df-gonai 225 | Standard constructive definition of mutual exclusion ("the exclusive OR"), based on the mnemonic given to computer scientists in the USA and UK: "It's cake or tea, but not cake and tea." Definition df-xor in [ILE] p. 0. |
⊢ go gonai broda gi brode gi ge ga broda gi brode gi naku zo'u ge broda gi brode | ||
Theorem | gonaii 226 | Inference form of df-gonai 225 (Contributed by la korvo, 8-Aug-2023.) |
⊢ gonai broda gi brode ⊢ ge ga broda gi brode gi naku zo'u ge broda gi brode | ||
Theorem | gonaiil 227 | Inference form of df-gonai 225 (Contributed by la korvo, 8-Aug-2023.) |
⊢ gonai broda gi brode ⊢ ga broda gi brode | ||
Theorem | gonaiir 228 | Inference form of df-gonai 225 (Contributed by la korvo, 8-Aug-2023.) |
⊢ gonai broda gi brode ⊢ naku zo'u ge broda gi brode | ||
Theorem | gonairi 229 | Reverse inference form of df-gonai 225 (Contributed by la korvo, 8-Aug-2023.) |
⊢ ge ga broda gi brode gi naku zo'u ge broda gi brode ⊢ gonai broda gi brode | ||
Syntax | sjonai 230 |
|
sumti ko'a .onai ko'e | ||
Definition | df-onai 231 | Definition of {.onai} in terms of {gonai}. By analogy with forethought version of example 12.2-5 from [CLL] p. 14. |
⊢ go ko'a .onai ko'e bo'a gi gonai ko'a bo'a gi ko'e bo'a | ||
Theorem | onaii 232 | Inference form of df-onai 231 (Contributed by la korvo, 16-Aug-2023.) |
⊢ ko'a .onai ko'e bo'a ⊢ gonai ko'a bo'a gi ko'e bo'a | ||
Theorem | onairi 233 | Reverse inference form of df-onai 231 (Contributed by la korvo, 16-Aug-2023.) |
⊢ gonai ko'a bo'a gi ko'e bo'a ⊢ ko'a .onai ko'e bo'a | ||
Syntax | sbjonai 234* |
|
selbri bu'a jonai bu'e | ||
Definition | df-jonai 235* | Definition of {jonai} in terms of {gonai}. By analogy with example 12.2-5 of [CLL] p. 14. |
⊢ go ko'a bu'a jonai bu'e ko'e gi gonai ko'a bu'a ko'e gi ko'a bu'e ko'e | ||
Theorem | jonaii 236* | Inference form of df-jonai 235 (Contributed by la korvo, 16-Aug-2023.) |
⊢ ko'a bu'a jonai bu'e ko'e ⊢ gonai ko'a bu'a ko'e gi ko'a bu'e ko'e | ||
Theorem | jonairi 237* | Reverse inference form of df-jonai 235 (Contributed by la korvo, 16-Aug-2023.) |
⊢ gonai ko'a bu'a ko'e gi ko'a bu'e ko'e ⊢ ko'a bu'a jonai bu'e ko'e | ||
Syntax | tgihonai 238 |
|
brirebla bo'a gi'onai bo'e | ||
Definition | df-gihonai 239 | Definition of {gi'onai} in terms of {gonai}. |
⊢ go ko'a bo'a gi'onai bo'e gi gonai ko'a bo'a gi ko'a bo'e | ||
Theorem | gihonaii 240 | Inference form of df-gihonai 239 (Contributed by la korvo, 14-Aug-2023.) |
⊢ ko'a bo'a gi'onai bo'e ⊢ gonai ko'a bo'a gi ko'a bo'e | ||
Theorem | gihonairi 241 | Inference form of df-gihonai 239 (Contributed by la korvo, 14-Aug-2023.) |
⊢ gonai ko'a bo'a gi ko'a bo'e ⊢ ko'a bo'a gi'onai bo'e | ||
Syntax | bgagin 242 |
|
bridi ga broda ginai brode | ||
Syntax | bgogin 243 |
|
bridi go broda ginai brode | ||
Definition | df-ginai-ga 244 |
|
⊢ go ga brode ginai broda gi ganai broda gi brode | ||
Definition | df-ginai-go 245 |
|
⊢ go go broda ginai brode gi gonai broda gi brode | ||
We build the various non-logical connectives, which express combinations of elements of relations beyond truth tables. In particular, we develop the notion of set membership. | ||
Syntax | sbcmima 246 |
|
selbri cmima | ||
Syntax | sbselcmi 247 |
|
selbri selcmi | ||
Definition | df-selcmi 248 |
|
⊢ go ko'a selcmi ko'e gi ko'a se cmima ko'e | ||
Syntax | snomei 249 |
|
sumti le nomei ku | ||
Definition | df-nomei 250 | {le nomei} is the empty set. Literally it is the set with zero cardinality. By standard folklore of sets, it is unique up to isomorphism, justifying {le}. |
⊢ naku zo'u ko'a cmima le nomei ku | ||
Theorem | nomei-gaiho 251 | If the empty set is inhabited, then there is a contradiction. (Contributed by la korvo, 16-May-2024.) |
⊢ ko'a cmima le nomei ku ⊢ gai'o | ||
Syntax | sbpamei 252 |
|
selbri pamei | ||
Definition | df-pamei 253 | The singleton set is the unique set whose elements are all isomorphic. Since we use the full semantics of second-order logic, we cannot construct the witness isomorphisms. As a compromise, we construct the isomorphism between any two elements of any particular singleton set. |
⊢ go ko'a pamei ko'e .e ko'i gi ko'e du ko'i | ||
Theorem | pameii 254 | Inference form of df-pamei 253 (Contributed by la korvo, 16-May-2024.) |
⊢ ko'a pamei ko'e .e ko'i ⊢ ko'e du ko'i | ||
Theorem | pameiii 255 | Inference form of df-pamei 253 (Contributed by la korvo, 16-May-2024.) |
⊢ ko'a pamei ko'e ⊢ ko'a pamei ko'i ⊢ ko'e du ko'i | ||
Axiom | ax-pamei-cmima 256 | The singleton set has one element. |
⊢ ganai ko'a pamei ko'e gi ko'e cmima ko'a | ||
Syntax | sbgripau 257 |
|
selbri gripau | ||
Definition | df-gripau 258 | Definition of {gripau} in terms of {cmima} and {na.a}. Defined in section 7 of [CLL] p. 18 based on the gloss "set-part". This definition is phrased with an implicit universal quantification instead of {ro da zo'u da cmima ko'a na.a ko'e} or {ro da poi ke'a cmima ko'a ku'o zo'u da cmima ko'e} for succinctness and ease of theorem-proving. |
⊢ go ko'a gripau ko'e gi ko'i cmima ko'a na.a ko'e | ||
Theorem | gripaui 259 | Inference form of df-gripau 258 (Contributed by la korvo, 15-Jul-2024.) |
⊢ ko'a gripau ko'e ⊢ ko'i cmima ko'a na.a ko'e | ||
Theorem | gripauri 260 | Reverse inference form of df-gripau 258 (Contributed by la korvo, 15-Jul-2024.) |
⊢ ko'i cmima ko'a na.a ko'e ⊢ ko'a gripau ko'e | ||
Theorem | gripauis 261 | Inference form of df-gripau 258 (Contributed by la korvo, 19-Jul-2024.) |
⊢ ko'a gripau ko'e ⊢ ganai ko'i cmima ko'a gi ko'i cmima ko'e | ||
Theorem | gripauiis 262 | Inference form of df-gripau 258 (Contributed by la korvo, 15-Jul-2024.) |
⊢ ko'a gripau ko'e ⊢ ko'i cmima ko'a ⊢ ko'i cmima ko'e | ||
Theorem | gripauris 263 | Reverse inference form of df-gripau 258 (Contributed by la korvo, 19-Jul-2024.) |
⊢ ganai ko'i cmima ko'a gi ko'i cmima ko'e ⊢ ko'a gripau ko'e | ||
Theorem | gripau-refl 264 | {gripau} is reflexive. (Contributed by la korvo, 15-Jul-2024.) |
⊢ ko'a gripau ko'a | ||
Theorem | gripau-trans 265 | {gripau} is transitive. (Contributed by la korvo, 19-Jul-2024.) |
⊢ ko'a gripau ko'e ⊢ ko'e gripau ko'i ⊢ ko'a gripau ko'i | ||
The internal hom is the syntax which internalizes relations. We define {ka} abstractions as well as several useful gismu for accessing the contents of those abstractions. Our approach uses {1 ka} quantification in acknowledgement of isomorphism-invariance. | ||
Syntax | sc 266 |
|
sumti ce'u | ||
Syntax | spk 267 | If {bo'a} is a brirebla, then filling its first place with a sumti and wrapping it with {1 ka} yields sumti. |
sumti 1 ka ko'a bo'a kei | ||
Syntax | sbckaji 268 |
|
selbri ckaji | ||
Theorem | bckaji 269 | {ckaji} is often found with this conjugation. (Contributed by la korvo, 14-Aug-2023.) |
bridi ko'a ckaji 1 ka ce'u bo'a kei | ||
Definition | df-ckaji 270 | Definition of {ckaji} from {ka}. Based on example 4.1-2 of [CLL] p. 11. |
⊢ go ko'a ckaji 1 ka ce'u bo'a kei gi ko'a bo'a | ||
Theorem | ckajii 271 | Inference form of df-ckaji 270 (Contributed by la korvo, 17-Jul-2023.) |
⊢ ko'a ckaji 1 ka ce'u bo'a kei ⊢ ko'a bo'a | ||
Theorem | ckajiri 272 | Reverse inference form of df-ckaji 270 (Contributed by la korvo, 17-Jul-2023.) |
⊢ ko'a bo'a ⊢ ko'a ckaji 1 ka ce'u bo'a kei | ||
Syntax | sbckini 273 |
|
selbri ckini | ||
Theorem | bckini 274 | {ckini} is often found with this conjugation. (Contributed by la korvo, 14-Aug-2023.) |
bridi ko'a ckini ko'e 1 ka ce'u bu'a ce'u kei | ||
Definition | df-ckini 275 |
|
⊢ go ko'a ckini ko'e 1 ka ce'u bu'a ce'u kei gi ko'a bu'a ko'e | ||
Theorem | ckinii 276 | Inference form of df-ckini 275 (Contributed by la korvo, 17-Jul-2023.) |
⊢ ko'a ckini ko'e 1 ka ce'u bu'a ce'u kei ⊢ ko'a bu'a ko'e | ||
Theorem | ckiniri 277 | Reverse inference form of df-ckini 275 (Contributed by la korvo, 17-Jul-2023.) |
⊢ ko'a bu'a ko'e ⊢ ko'a ckini ko'e 1 ka ce'u bu'a ce'u kei | ||
Theorem | ckini-se 278 | {se} can be inserted underneath ckini3. Example theorem from early draft of la brismu. (Contributed by la korvo, 12-Jul-2023.) |
⊢ ko'a ckini ko'e 1 ka ce'u bu'a ce'u kei ⊢ ko'e ckini ko'a 1 ka ce'u se bu'a ce'u kei | ||
Syntax | sbsefsi 279 |
|
selbri sefsi | ||
Definition | df-sefsi 280 | A useful experimental gismu like {ckini}. In particular, {sefsi} can adapt between unary and binary {ka} abstractions. This definition was given by la xorxes. |
⊢ go ko'a sefsi ko'e gi ko'a ckini ko'a ko'e | ||
Syntax | sbsimsa 281 |
|
selbri simsa | ||
Theorem | bsimsa 282 | {simsa} is often found with this conjugation. (Contributed by la korvo, 6-Aug-2023.) |
bridi ko'a simsa ko'e 1 ka ce'u bu'a kei | ||
Definition | df-simsa 283 | Definition of {simsa} in terms of {ckaji}. |
⊢ go ko'a simsa ko'e ko'i gi ko'a .e ko'e ckaji ko'i | ||
Theorem | simsai 284 | Inference form of df-simsa 283 (Contributed by la korvo, 6-Aug-2023.) |
⊢ ko'a simsa ko'e ko'i ⊢ ko'a .e ko'e ckaji ko'i | ||
Theorem | simsail 285 | Inference form of df-simsa 283 (Contributed by la korvo, 6-Aug-2023.) |
⊢ ko'a simsa ko'e ko'i ⊢ ko'a ckaji ko'i | ||
Theorem | simsair 286 | Inference form of df-simsa 283 (Contributed by la korvo, 6-Aug-2023.) |
⊢ ko'a simsa ko'e ko'i ⊢ ko'e ckaji ko'i | ||
Theorem | simsari 287 | Reverse inference form of df-simsa 283 (Contributed by la korvo, 6-Aug-2023.) |
⊢ ko'a .e ko'e ckaji ko'i ⊢ ko'a simsa ko'e ko'i | ||
Theorem | simsarii 288 | Reverse inference form of df-simsa 283 (Contributed by la korvo, 6-Aug-2023.) |
⊢ ko'a ckaji ko'i ⊢ ko'e ckaji ko'i ⊢ ko'a simsa ko'e ko'i | ||
Axiom | ax-simsa-sym 289 | {simsa} is symmetric. |
⊢ go ko'a simsa ko'e ko'i gi ko'e simsa ko'a ko'i | ||
Syntax | sbdunli 290 |
|
selbri dunli | ||
Theorem | bdunli 291 | {dunli} is often found with this conjugation. (Contributed by la korvo, 23-Jun-2024.) |
bridi ko'a dunli ko'e 1 ka ce'u bu'a ce'u kei | ||
Definition | df-dunli 292 | Definition of {dunli} by la ilmen in terms of {ckini}. A metavariable is used instead of a universal quantifier to ease manipulation. |
⊢ go ko'a dunli ko'e ko'i gi ko'a .o ko'e ckini ko'o ko'i | ||
Theorem | dunlii 293 | Inference form of df-dunli 292 (Contributed by la korvo, 23-Jun-2024.) |
⊢ ko'a dunli ko'e ko'i ⊢ ko'a .o ko'e ckini ko'o ko'i | ||
Theorem | dunliri 294 | Reverse inference form of df-dunli 292 (Contributed by la korvo, 23-Jun-2024.) |
⊢ ko'a .o ko'e ckini ko'o ko'i ⊢ ko'a dunli ko'e ko'i | ||
Theorem | dunli-refl 295 | {dunli} is reflexive over any dunli3. (Contributed by la korvo, 14-Aug-2024.) |
⊢ ko'a dunli ko'a ko'e | ||
Theorem | dunli-sym 296 | Because modal x1 and modal x2 of {dunli} are definitionally interchangeable, {dunli} itself is symmetric. (Contributed by la korvo, 20-Sep-2024.) |
⊢ go ko'a dunli ko'e ko'i gi ko'e dunli ko'a ko'i | ||
Syntax | sbmintu 297 |
|
selbri mintu | ||
Theorem | bmintu 298 | {mintu} is often found with this conjugation. (Contributed by la korvo, 6-Aug-2023.) |
bridi ko'a mintu ko'e 1 ka ce'u bu'a kei | ||
Definition | df-mintu 299 | Definition of {mintu} in terms of {ckaji}. |
⊢ go ko'a mintu ko'e ko'i gi ko'a .o ko'e ckaji ko'i | ||
Theorem | mintui 300 | Inference form of df-mintu 299 (Contributed by la korvo, 6-Aug-2023.) |
⊢ ko'a mintu ko'e ko'i ⊢ ko'a .o ko'e ckaji ko'i |
< Previous Next > |
Copyright terms: Public domain | < Previous Next > |