HomeHome brismu bridi
Theorem List (p. 3 of 9)
< Previous  Next >

Mirrors  >  Metamath Home Page  >  Home Page  >  Theorem List Contents       This page: Page List

Theorem List for brismu bridi - 201-300   *Has distinct variable group(s)
TypeLabelDescription
Statement
 
Axiomax-qi1 201 Axiom of quantified implication: if {ganai broda gi brode} under some universal quantifier, then the universal quantification of {broda} implies the universal quantification of {brode}. Relationally, the tuples of the consequent might not have the same data as the tuples of the antecedent; we only know that they exist, not that they are related.
ganai ro da zo'u ganai broda gi brode gi ganai ro da zo'u broda gi ro da zo'u brode
 
Theoremqi1i 202 Inference form of ax-qi1 201 (Contributed by la korvo, 23-Jun-2024.)
ro da zo'u ganai broda gi brode   =>   ⊢ ganai ro da zo'u broda gi ro da zo'u brode
 
Theoremqi1-mp 203 Inference form of ax-qi1 201. Like ax-mp 10 under {ro da}. (Contributed by la korvo, 23-Jun-2024.)
ro da zo'u ganai broda gi brode   &   ⊢ ro da zo'u broda   =>   ⊢ ro da zo'u brode
 
Axiomax-qi2 204 A variant of ax-qi1 201 for second-order quantifiers. Very few claims will be invariant under free choice of {bu'a}, but those that are should be subject to this transformation by analogy to first-order reasoning and an appeal to set theory.
ganai ro bu'a zo'u ganai broda gi brode gi ganai ro bu'a zo'u broda gi ro bu'a zo'u brode
 
Theoremqi2i 205 Inference form of ax-qi2 204 (Contributed by la korvo, 23-Jun-2024.)
ro bu'a zo'u ganai broda gi brode   =>   ⊢ ganai ro bu'a zo'u broda gi ro bu'a zo'u brode
 
Theoremqi2-mp 206 Inference form of ax-qi2 204. Like ax-mp 10 under {ro bu'a}. (Contributed by la korvo, 23-Jun-2024.)
ro bu'a zo'u ganai broda gi brode   &   ⊢ ro bu'a zo'u broda   =>   ⊢ ro bu'a zo'u brode
 
Axiomax-ro-inst-2u 207 {ro bu'a} may be instantiated with any selbri. As example 13.3 of [CLL] p. 16 notes, this will be of limited use, and is included largely to allow for a second-order definition of equality.
brirebla bo'a   &   ⊢ ro bu'e zo'u ko'a bu'e   =>   ⊢ ko'a bo'a
 
Axiomax-ro-inst-1u 208 {ro da} may be instantiated with any sumti.
sumti ko'a   &   ⊢ ro da zo'u da bo'a   =>   ⊢ ko'a bo'a
 
Theoremro2-mp 209 Modus ponens under {ro bu'a}. (Contributed by la korvo, 23-Jun-2024.)
ro bu'a zo'u broda   &   ⊢ ganai broda gi brode   =>   ⊢ ro bu'a zo'u brode
 
Theoremro2-bi 210 Biconditional modus ponens under {ro bu'a}. (Contributed by la korvo, 16-Jul-2023.)
ro bu'a zo'u broda   &   ⊢ go broda gi brode   =>   ⊢ ro bu'a zo'u brode
 
Theoremro2-bi-rev 211 Biconditional modus ponens under {ro bu'a}. (Contributed by la korvo, 16-Aug-2023.)
ro bu'a zo'u broda   &   ⊢ go brode gi broda   =>   ⊢ ro bu'a zo'u brode
 
Axiomax-ro1-com 212* First-order universal quantifiers commute.
ganai ro da zo'u ro de zo'u broda gi ro de zo'u ro da zo'u broda
 
Theoremro1-coms 213* Swap quantifiers on the antecedent. (Contributed by la korvo, 4-Jan-2025.)
ganai ro da zo'u ro de zo'u broda gi brode   =>   ⊢ ganai ro de zo'u ro da zo'u broda gi brode
 
1.11  Identity: {du}
 
Syntaxsbdu 214 Identity as a binary relation.
selbri du
 
Definitiondf-du 215 A second-order characterization of identity which is non-first-order-izable.
go ko'a du ko'e gi ro bu'a zo'u ko'a .o ko'e bu'a
 
Theoremdui 216 Inference form of df-du 215 (Contributed by la korvo, 18-Jul-2023.)
ko'a du ko'e   =>   ⊢ ro bu'a zo'u ko'a .o ko'e bu'a
 
Theoremduis 217 Sugared inference form of df-du 215 (Contributed by la korvo, 23-Jun-2024.)
ko'a du ko'e   =>   ⊢ go ko'a bu'a gi ko'e bu'a
 
Theoremduri 218 Reverse inference form of df-du 215 (Contributed by la korvo, 18-Jul-2023.)
ro bu'a zo'u ko'a .o ko'e bu'a   =>   ⊢ ko'a du ko'e
 
Theoremduris 219 Sugared reverse inference form of df-du 215 (Contributed by la korvo, 23-Jun-2024.)
go ko'a bu'a gi ko'e bu'a   =>   ⊢ ko'a du ko'e
 
Theoremdu-refl 220 {du} is reflexive. (Contributed by la korvo, 16-Aug-2023.) (Shortened by la korvo, 23-Jun-2024.)
ko'a du ko'a
 
Theoremdu-trans 221 {du} is transitive. (Contributed by la korvo, 16-Aug-2023.) (Shortened by la korvo, 23-Jun-2024.)
ko'a du ko'e   &   ⊢ ko'e du ko'i   =>   ⊢ ko'a du ko'i
 
Axiomax-du-trans 222 A not-quite-transitive law of equality.
ganai ko'a du ko'e gi ganai ko'a du ko'i gi ko'e du ko'i
 
Theoremdu-symi 223 {du} is symmetric. (Contributed by la korvo, 16-Aug-2023.) (Shortened by la korvo, 23-Jun-2024.)
ko'a du ko'e   =>   ⊢ ko'e du ko'a
 
Theoremdu-sym-ganai 224 An internal version of du-symi 223 (Contributed by la korvo, 4-Jan-2025.)
ganai ko'a du ko'e gi ko'e du ko'a
 
Theoremdu-sym-go 225 An internal version of du-symi 223 (Contributed by la korvo, 4-Jan-2025.)
go ko'a du ko'e gi ko'e du ko'a
 
Theoremse-du-elim 226 {se du} may be replaced with {du}. Theorem Cat.Allegory.Base.dual-id in [1Lab] p. 0. (Contributed by la korvo, 9-Jul-2023.)
ko'a se du ko'e   =>   ⊢ ko'a du ko'e
 
Axiomax-vsub 227* An axiom of variable substitution.
ganai da du de gi ganai ro de zo'u broda gi ro da zo'u ganai da du de gi broda
 
Axiomax-ro1-sub 228* First-order quantifier substitution.
ganai ro da zo'u da du de gi ro de zo'u de du da
 
Axiomax-ro-int 229* First-order universal quantifier introduction with a scope gadget.
ga ro di zo'u di du da gi ga ro di zo'u di du de gi ro di zo'u ganai da du de gi ro di zo'u da du de
 
1.12  Boolean predicates: {cei'i}
 
Syntaxbceihi 230

bridi cei'i
 
Definitiondf-ceihi 231 The predicate which is always true. Note that both sides are relational: the left-hand side definitionally only has one inhabitant, so this definition asserts that {ko'a du ko'a} is only true via one path. For related statements which reinforce this idea, see ceihi 232 or ceihi-nf 404.
go cei'i gi ko'a du ko'a
 
Theoremceihi 232 {cei'i} is always true. (Contributed by la korvo, 18-Jul-2023.)
cei'i
 
Theoremmp-ceihi 233 A proposition implied by {cei'i} is always true. (Contributed by la korvo, 4-Jan-2025.)
ganai cei'i gi broda   =>   ⊢ broda
 
Theoremk-ceihi 234 {cei'i} is the terminal object. (Contributed by la korvo, 4-Jan-2025.)
ganai broda gi cei'i
 
1.13  Negation I: {gai'o}, {naku}

Lojban classically contains a {na} which may slide around in a prenex and between connectives. To be constructive, we will more carefully introduce {naku} negation within the prenex first, and then justify various simplifications and rearrangements.

 
Syntaxbgaiho 235

bridi gai'o
 
Syntaxbnk 236 Syntax for negation over an empty row of quantifiers.
bridi naku broda
 
Definitiondf-naku 237 Traditional definition of intuitionistic negation.
go naku broda gi ganai broda gi gai'o
 
Theoremnaku-uncur 238 Uncurried form of df-naku 237 (Contributed by la korvo, 20-Aug-2023.)
ganai ge naku broda gi broda gi gai'o
 
Theoremlnc 239 The law of non-contradiction. No bridi is simultaneously inhabited and uninhabited. (Contributed by la korvo, 19-Sep-2024.)
naku ge naku broda gi broda
 
Theoremlnci 240 The law of non-contradiction. If a bridi is simultaneously inhabited and uninhabited, then we reach an absurdity. (Contributed by la korvo, 20-Aug-2023.)
ge broda gi naku broda   =>   ⊢ gai'o
 
Theoremnakui 241 Inference form of df-naku 237 (Contributed by la korvo, 9-Aug-2023.)
naku broda   =>   ⊢ ganai broda gi gai'o
 
Theoremnakuii 242 Inference form of df-naku 237 (Contributed by la korvo, 9-Aug-2023.)
naku broda   &   ⊢ broda   =>   ⊢ gai'o
 
Theoremnakuri 243 Reverse inference form of df-naku 237 (Contributed by la korvo, 9-Aug-2023.)
ganai broda gi gai'o   =>   ⊢ naku broda
 
Theoremna-gaiho 244 {gai'o} is uninhabited. (Contributed by la korvo, 9-Aug-2023.)
naku gai'o
 
Axiomax-sdo 245 The principle of self-defeating objects. If an object's existence would imply that it doesn't exist -- usually via contradiction -- then it doesn't exist. As a special case, if some tuple's membership in a relation would imply non-membership in that relation, then it's not a member. For a survey of this principle across maths, see [Tao].
ganai ganai broda gi naku broda gi naku broda
 
Theoremsdoi 246 Inference form of ax-sdo 245 (Contributed by la korvo, 9-Aug-2023.)
ganai broda gi naku broda   =>   ⊢ naku broda
 
Theoremsdod 247 Deduction form of ax-sdo 245 (Contributed by la korvo, 4-Jan-2025.)
ganai broda gi ganai brode gi naku brode   =>   ⊢ ganai broda gi naku brode
 
Axiomax-efq 248 The principle of explosion. If a tuple both is and is not a member of some relation, then we are inconsistent and any theorem whatsoever may be derived. The short name "efq" comes from the Latin phrase, "ex falso quodlibet".
ganai naku broda gi ganai broda gi brode
 
Theoremefqi 249 Inference form of ax-efq 248 (Contributed by la korvo, 25-Jun-2024.)
naku broda   =>   ⊢ ganai broda gi brode
 
Theoremefqd 250 Deduction form of ax-efq 248 (Contributed by la korvo, 4-Jan-2025.)
ganai broda gi naku brode   =>   ⊢ ganai broda gi ganai brode gi brodi
 
Theoremefqii 251 Inference form of ax-efq 248 (Contributed by la korvo, 25-Jun-2024.)
naku broda   &   ⊢ broda   =>   ⊢ brode
 
Theoremcon2d 252 A contrapositive deduction. (Contributed by la korvo, 1-Jan-2025.)
ganai broda gi ganai brode gi naku brodi   =>   ⊢ ganai broda gi ganai brodi gi naku brode
 
Theoremmt2d 253 Deduction form of modus tollens. (Contributed by la korvo, 1-Jan-2025.)
ganai broda gi brode   &   ⊢ ganai broda gi ganai brodi gi naku brode   =>   ⊢ ganai broda gi naku brodi
 
Theoremnsyl3 254 A negated syllogism. Can be seen as a deduction form of modus tollens. (Contributed by la korvo, 1-Jan-2025.)
ganai broda gi naku brode   &   ⊢ ganai brodi gi brode   =>   ⊢ ganai brodi gi naku broda
 
Theoremcon2i 255 The standard contrapositive inference. (Contributed by la korvo, 1-Jan-2025.)
ganai broda gi naku brode   =>   ⊢ ganai brode gi naku broda
 
Theoremnakunaku 256 Double negation is a functor. (Contributed by la korvo, 4-Jan-2025.)
ganai broda gi naku naku broda
 
Theoremnakunakui 257 Inference form of nakunaku 256 (Contributed by la korvo, 4-Jan-2025.)
broda   =>   ⊢ naku naku broda
 
Theoremnsyl 258 A negated syllogism. Can be seen as a deduction form of modus tollens. (Contributed by la korvo, 1-Jan-2025.)
ganai broda gi naku brode   &   ⊢ ganai brodi gi brode   =>   ⊢ ganai broda gi naku brodi
 
Theoremstewart 259 A syllogism underlying the Swallowing Elephants puzzle from chapter 4 of [Stewart] p. 22. (Contributed by la korvo, 1-Jan-2025.)
ganai broda gi brode   &   ⊢ ganai brodi gi brodo   &   ⊢ ganai brodu gi brodi   &   ⊢ ganai brode gi naku brodo   =>   ⊢ ganai broda gi naku brodu
 
1.14  Mutual exclusion I

The final of our five essential connectives. As with disjunctions, we can introduce all versions of mutual exclusion at once.

 
1.14.1  {gonai}
 
Syntaxbgon 260

bridi gonai broda gi brode
 
Definitiondf-gonai 261 Standard constructive definition of mutual exclusion ("the exclusive OR"), based on the mnemonic given to computer scientists in the USA and UK: "It's cake or tea, but not cake and tea."
go gonai broda gi brode gi ge ga broda gi brode gi naku ge broda gi brode
 
Theoremgonaii 262 Inference form of df-gonai 261 (Contributed by la korvo, 8-Aug-2023.)
gonai broda gi brode   =>   ⊢ ge ga broda gi brode gi naku ge broda gi brode
 
Theoremgonaiil 263 Inference form of df-gonai 261 (Contributed by la korvo, 8-Aug-2023.)
gonai broda gi brode   =>   ⊢ ga broda gi brode
 
Theoremgonaiir 264 Inference form of df-gonai 261 (Contributed by la korvo, 8-Aug-2023.)
gonai broda gi brode   =>   ⊢ naku ge broda gi brode
 
Theoremgonairi 265 Reverse inference form of df-gonai 261 (Contributed by la korvo, 8-Aug-2023.)
ge ga broda gi brode gi naku ge broda gi brode   =>   ⊢ gonai broda gi brode
 
1.14.2  {.onai}
 
Syntaxsjonai 266

sumti ko'a .onai ko'e
 
Definitiondf-onai 267 Definition of {.onai} in terms of {gonai}. By analogy with forethought version of example 12.2-5 from [CLL] p. 14.
go ko'a .onai ko'e bo'a gi gonai ko'a bo'a gi ko'e bo'a
 
Theoremonaii 268 Inference form of df-onai 267 (Contributed by la korvo, 16-Aug-2023.)
ko'a .onai ko'e bo'a   =>   ⊢ gonai ko'a bo'a gi ko'e bo'a
 
Theoremonairi 269 Reverse inference form of df-onai 267 (Contributed by la korvo, 16-Aug-2023.)
gonai ko'a bo'a gi ko'e bo'a   =>   ⊢ ko'a .onai ko'e bo'a
 
1.14.3  {jonai}
 
Syntaxsbjonai 270*

selbri bu'a jonai bu'e
 
Definitiondf-jonai 271* Definition of {jonai} in terms of {gonai}. By analogy with example 12.2-5 of [CLL] p. 14.
go ko'a bu'a jonai bu'e ko'e gi gonai ko'a bu'a ko'e gi ko'a bu'e ko'e
 
Theoremjonaii 272* Inference form of df-jonai 271 (Contributed by la korvo, 16-Aug-2023.)
ko'a bu'a jonai bu'e ko'e   =>   ⊢ gonai ko'a bu'a ko'e gi ko'a bu'e ko'e
 
Theoremjonairi 273* Reverse inference form of df-jonai 271 (Contributed by la korvo, 16-Aug-2023.)
gonai ko'a bu'a ko'e gi ko'a bu'e ko'e   =>   ⊢ ko'a bu'a jonai bu'e ko'e
 
1.14.4  {gi'onai}
 
Syntaxtgihonai 274

brirebla bo'a gi'onai bo'e
 
Definitiondf-gihonai 275 Definition of {gi'onai} in terms of {gonai}.
go ko'a bo'a gi'onai bo'e gi gonai ko'a bo'a gi ko'a bo'e
 
Theoremgihonaii 276 Inference form of df-gihonai 275 (Contributed by la korvo, 14-Aug-2023.)
ko'a bo'a gi'onai bo'e   =>   ⊢ gonai ko'a bo'a gi ko'a bo'e
 
Theoremgihonairi 277 Inference form of df-gihonai 275 (Contributed by la korvo, 14-Aug-2023.)
gonai ko'a bo'a gi ko'a bo'e   =>   ⊢ ko'a bo'a gi'onai bo'e
 
1.15  Extra connectives
 
1.15.1  {ginai}
 
Syntaxbgagin 278

bridi ga broda ginai brode
 
Syntaxbgogin 279

bridi go broda ginai brode
 
Definitiondf-ginai-ga 280

go ga brode ginai broda gi ganai broda gi brode
 
Definitiondf-ginai-go 281

go go broda ginai brode gi gonai broda gi brode
 
PART 2  NON-LOGICAL CONNECTIVES

We build the various non-logical connectives, which express combinations of elements of relations beyond truth tables. In particular, we develop the notion of set membership.

 
2.1  Sets I: {nomei}, {pamei}
 
2.1.1  {cmima}
 
Syntaxsbcmima 282

selbri cmima
 
Syntaxsbselcmi 283

selbri selcmi
 
Definitiondf-selcmi 284

go ko'a selcmi ko'e gi ko'a se cmima ko'e
 
Axiomax-cmima-ext 285 The Axiom of Extensionality: If no elements differ in elementhood for two sets, then they are the same set.
ganai ro da zo'u da cmima ko'a .o ko'e gi ko'a du ko'e
 
2.1.2  {nomei}
 
Syntaxsnomei 286

sumti le nomei ku
 
Definitiondf-nomei 287 {le nomei} is the empty set. Literally it is the set with zero cardinality. By standard folklore of sets, it is unique up to isomorphism, justifying {le}.
naku ko'a cmima le nomei ku
 
Theoremnomei-gaiho 288 If the empty set is inhabited, then there is a contradiction. (Contributed by la korvo, 16-May-2024.)
ko'a cmima le nomei ku   =>   ⊢ gai'o
 
2.1.3  {pamei}
 
Syntaxsbpamei 289

selbri pamei
 
Definitiondf-pamei 290 The singleton set is the unique set whose elements are all isomorphic. Since we use the full semantics of second-order logic, we cannot construct the witness isomorphisms. As a compromise, we construct the isomorphism between any two elements of any particular singleton set.
go ko'a pamei ko'e .e ko'i gi ko'e du ko'i
 
Theorempameii 291 Inference form of df-pamei 290 (Contributed by la korvo, 16-May-2024.)
ko'a pamei ko'e .e ko'i   =>   ⊢ ko'e du ko'i
 
Theorempameiii 292 Inference form of df-pamei 290 (Contributed by la korvo, 16-May-2024.)
ko'a pamei ko'e   &   ⊢ ko'a pamei ko'i   =>   ⊢ ko'e du ko'i
 
Axiomax-pamei-cmima 293 The singleton set has one element.
ganai ko'a pamei ko'e gi ko'e cmima ko'a
 
2.2  Subsets
 
2.2.1  {gripau}
 
Syntaxsbgripau 294

selbri gripau
 
Definitiondf-gripau 295 Definition of {gripau} in terms of {cmima} and {na.a}. Defined in section 7 of [CLL] p. 18 based on the gloss "set-part". This definition is phrased with an implicit universal quantification instead of {ro da zo'u da cmima ko'a na.a ko'e} or {ro da poi ke'a cmima ko'a ku'o zo'u da cmima ko'e} for succinctness and ease of theorem-proving.
go ko'a gripau ko'e gi ko'i cmima ko'a na.a ko'e
 
Theoremgripaui 296 Inference form of df-gripau 295 (Contributed by la korvo, 15-Jul-2024.)
ko'a gripau ko'e   =>   ⊢ ko'i cmima ko'a na.a ko'e
 
Theoremgripauri 297 Reverse inference form of df-gripau 295 (Contributed by la korvo, 15-Jul-2024.)
ko'i cmima ko'a na.a ko'e   =>   ⊢ ko'a gripau ko'e
 
Theoremgripauis 298 Inference form of df-gripau 295 (Contributed by la korvo, 19-Jul-2024.)
ko'a gripau ko'e   =>   ⊢ ganai ko'i cmima ko'a gi ko'i cmima ko'e
 
Theoremgripauiis 299 Inference form of df-gripau 295 (Contributed by la korvo, 15-Jul-2024.)
ko'a gripau ko'e   &   ⊢ ko'i cmima ko'a   =>   ⊢ ko'i cmima ko'e
 
Theoremgripauris 300 Reverse inference form of df-gripau 295 (Contributed by la korvo, 19-Jul-2024.)
ganai ko'i cmima ko'a gi ko'i cmima ko'e   =>   ⊢ ko'a gripau ko'e
    < Previous  Next >

Page List
Jump to page: Contents  1 1-100 2 101-200201-300 4 301-400 5 401-500 6 501-600 7 601-700 8 701-800 9 801-827
  Copyright terms: Public domain < Previous  Next >