| brismu bridi |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > Home > Th. List > du-sym-ganai | |||
| Description: An internal version of du-symi 259 (Contributed by la korvo, 4-Jan-2025.) |
| Ref | Expression |
|---|---|
| du-sym-ganai | ⊢ ganai ko'a du ko'e gi ko'e du ko'a |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | du-refl 256 | . 2 ⊢ ko'a du ko'a | |
| 2 | ax-du-trans 258 | . 2 ⊢ ganai ko'a du ko'e gi ganai ko'a du ko'a gi ko'e du ko'a | |
| 3 | 1, 2 | mpi 36 | 1 ⊢ ganai ko'a du ko'e gi ko'e du ko'a |
| Colors of variables: sumti selbri bridi |
| Syntax hints: du sbdu 250 |
| This theorem was proved from axioms: ax-mp 10 ax-k 11 ax-s 15 ax-ge-le 48 ax-ge-re 49 ax-ge-in 50 ax-gen2 227 ax-qi2 239 ax-du-trans 258 |
| This theorem depends on definitions: df-go 83 df-o 198 df-du 251 |
| This theorem is referenced by: du-sym-go 261 |
| Copyright terms: Public domain | W3C validator |