![]() |
brismu bridi |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > Home > Th. List > du-sym-go |
Description: An internal version of du-symi 259 (Contributed by la korvo, 4-Jan-2025.) |
Ref | Expression |
---|---|
du-sym-go | ⊢ go ko'a du ko'e gi ko'e du ko'a |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | du-sym-ganai 260 | . 2 ⊢ ganai ko'a du ko'e gi ko'e du ko'a | |
2 | du-sym-ganai 260 | . 2 ⊢ ganai ko'e du ko'a gi ko'a du ko'e | |
3 | 1, 2 | iso 87 | 1 ⊢ go ko'a du ko'e gi ko'e du ko'a |
Colors of variables: sumti selbri bridi |
Syntax hints: du sbdu 250 |
This theorem was proved from axioms: ax-mp 10 ax-k 11 ax-s 15 ax-ge-le 48 ax-ge-re 49 ax-ge-in 50 ax-gen2 227 ax-qi2 239 ax-du-trans 258 |
This theorem depends on definitions: df-go 83 df-o 198 df-du 251 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |