![]() |
brismu bridi |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > Home > Th. List > se-du-elim |
Description: {se du} may be replaced with {du}. Theorem Cat.Allegory.Base.dual-id in [1Lab] p. 0. (Contributed by la korvo, 9-Jul-2023.) |
Ref | Expression |
---|---|
se-du-elim.0 | ⊢ ko'a se du ko'e |
Ref | Expression |
---|---|
se-du-elim | ⊢ ko'a du ko'e |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | se-du-elim.0 | . . 3 ⊢ ko'a se du ko'e | |
2 | 1 | sei 214 | . 2 ⊢ ko'e du ko'a |
3 | 2 | du-symi 259 | 1 ⊢ ko'a du ko'e |
Colors of variables: sumti selbri bridi |
Syntax hints: du sbdu 250 |
This theorem was proved from axioms: ax-mp 10 ax-k 11 ax-s 15 ax-ge-le 48 ax-ge-re 49 ax-ge-in 50 ax-gen2 227 ax-spec2 232 ax-qi2 239 |
This theorem depends on definitions: df-go 83 df-o 198 df-se 213 df-du 251 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |