| brismu bridi |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > Home > Th. List > du-symi | |||
| Description: {du} is symmetric. (Contributed by la korvo, 16-Aug-2023.) (Shortened by la korvo, 23-Jun-2024.) |
| Ref | Expression |
|---|---|
| du-symi.0 | ⊢ ko'a du ko'e |
| Ref | Expression |
|---|---|
| du-symi | ⊢ ko'e du ko'a |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | du-symi.0 | . . . 4 ⊢ ko'a du ko'e | |
| 2 | 1 | duis 253 | . . 3 ⊢ go ko'a bu'a gi ko'e bu'a |
| 3 | 2 | go-comi 98 | . 2 ⊢ go ko'e bu'a gi ko'a bu'a |
| 4 | 3 | duris 255 | 1 ⊢ ko'e du ko'a |
| Colors of variables: sumti selbri bridi |
| This theorem was proved from axioms: ax-mp 10 ax-k 11 ax-s 15 ax-ge-le 48 ax-ge-re 49 ax-ge-in 50 ax-gen2 227 ax-spec2 232 ax-qi2 239 |
| This theorem depends on definitions: df-go 83 df-o 198 df-du 251 |
| This theorem is referenced by: se-du-elim 262 |
| Copyright terms: Public domain | W3C validator |