Home brismu bridi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >   Home  >  Th. List  >  go-comi

Theorem go-comi 98
Description: Inference form of go-com 97 (Contributed by la korvo, 31-Jul-2023.)
Hypothesis
Ref Expression
go-comi.0go broda gi brode
Assertion
Ref Expression
go-comigo brode gi broda

Proof of Theorem go-comi
StepHypRef Expression
1 go-comi.0 . 2go broda gi brode
2 go-com-lem 96 . 2ganai go broda gi brode gi go brode gi broda
31, 2ax-mp 10 1go brode gi broda
Colors of variables: sumti selbri bridi
Syntax hints:   go bgo 82
This theorem was proved from axioms:  ax-mp 10  ax-k 11  ax-s 15  ax-ge-le 48  ax-ge-re 49  ax-ge-in 50
This theorem depends on definitions:  df-go 83
This theorem is referenced by:  bi-rev  102  bi-rev-syl  103  e-com  150  a-com  187  o-com  201  se-ganaii  220  se-ganair  221  ro2-bi-rev  246  du-symi  259  dunli-sym  370  mintu-sym  377  te-ganaii  404  te-ganair  405  subid  452
  Copyright terms: Public domain W3C validator