brismu bridi |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > Home > Th. List > go-comi |
Description: Inference form of go-com 65 Theorem bicomi in [ILE] p. 0. (Contributed by la korvo, 31-Jul-2023.) |
Ref | Expression |
---|---|
go-comi.0 | ⊢ go broda gi brode |
Ref | Expression |
---|---|
go-comi | ⊢ go brode gi broda |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | go-comi.0 | . 2 ⊢ go broda gi brode | |
2 | go-com-lem 64 | . 2 ⊢ ganai go broda gi brode gi go brode gi broda | |
3 | 1, 2 | ax-mp 10 | 1 ⊢ go brode gi broda |
Colors of variables: sumti selbri bridi |
Syntax hints: go bgo 51 |
This theorem was proved from axioms: ax-mp 10 ax-k 11 ax-s 14 ax-ge-le 34 ax-ge-re 35 ax-ge-in 36 |
This theorem depends on definitions: df-go 52 |
This theorem is referenced by: bi-rev 70 bi-rev-syl 71 a-com 142 o-com 156 se-ganaii 175 se-ganair 176 ro2-bi-rev 195 du-sym 204 dunli-sym 296 mintu-sym 303 te-ganaii 330 te-ganair 331 subid 355 |
Copyright terms: Public domain | W3C validator |