Home brismu bridi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >   Home  >  Th. List  >  go-comi

Theorem go-comi 66
Description: Inference form of go-com 65 Theorem bicomi in [ILE] p. 0. (Contributed by la korvo, 31-Jul-2023.)
Hypothesis
Ref Expression
go-comi.0go broda gi brode
Assertion
Ref Expression
go-comigo brode gi broda

Proof of Theorem go-comi
StepHypRef Expression
1 go-comi.0 . 2go broda gi brode
2 go-com-lem 64 . 2ganai go broda gi brode gi go brode gi broda
31, 2ax-mp 10 1go brode gi broda
Colors of variables: sumti selbri bridi
Syntax hints:  go bgo 51
This theorem was proved from axioms:  ax-mp 10  ax-k 11  ax-s 14  ax-ge-le 34  ax-ge-re 35  ax-ge-in 36
This theorem depends on definitions:  df-go 52
This theorem is referenced by:  bi-rev  70  bi-rev-syl  71  a-com  142  o-com  156  se-ganaii  175  se-ganair  176  ro2-bi-rev  195  du-sym  204  dunli-sym  296  mintu-sym  303  te-ganaii  330  te-ganair  331  subid  355
  Copyright terms: Public domain W3C validator