| brismu bridi |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > Home > Th. List > go-comi | |||
| Description: Inference form of go-com 97 (Contributed by la korvo, 31-Jul-2023.) |
| Ref | Expression |
|---|---|
| go-comi.0 | ⊢ go broda gi brode |
| Ref | Expression |
|---|---|
| go-comi | ⊢ go brode gi broda |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | go-comi.0 | . 2 ⊢ go broda gi brode | |
| 2 | go-com-lem 96 | . 2 ⊢ ganai go broda gi brode gi go brode gi broda | |
| 3 | 1, 2 | ax-mp 10 | 1 ⊢ go brode gi broda |
| Colors of variables: sumti selbri bridi |
| Syntax hints: go bgo 82 |
| This theorem was proved from axioms: ax-mp 10 ax-k 11 ax-s 15 ax-ge-le 48 ax-ge-re 49 ax-ge-in 50 |
| This theorem depends on definitions: df-go 83 |
| This theorem is referenced by: bi-rev 102 bi-rev-syl 103 e-com 150 a-com 187 o-com 201 se-ganaii 220 se-ganair 221 ro2-bi-rev 246 du-symi 259 dunli-sym 370 mintu-sym 377 te-ganaii 404 te-ganair 405 subid 452 |
| Copyright terms: Public domain | W3C validator |