Home | brismu
bridi Theorem List (p. 1 of 8) |
< Previous Next >
|
Mirrors > Metamath Home Page > Home Page > Theorem List Contents This page: Page List |
Type | Label | Description |
---|---|---|
Statement | ||
We start by internalizing five standard logical connectives: {ganai}, {ge}, {go}, {ga}, and {gonai}. We will use these connectives to provide a basic logical framework for defining selbri and proving bridi. | ||
Before logic, we must define some basic elements of syntax: bridi, selbri, and sumti. We will also embrace some experimental concepts not named in the baseline valsi, but exposed in the baseline grammar: prenexes and bridi-tails. | ||
Syntax | tsb 1 | Any selbri is a valid brirebla. |
brirebla bu'a | ||
Syntax | tss 2 | Any brirebla can have an additional trailing sumti. |
brirebla bo'a brirebla bo'a ko'a | ||
Syntax | btb 3 | Build a bridi from a sumti and brirebla. |
bridi ko'a bo'a | ||
Theorem | bu 4 | Normal form for unary selbri. (Contributed by la korvo, 14-Aug-2023.) |
bridi ko'a bu'a | ||
Theorem | bb 5 | Normal form for binary selbri. (Contributed by la korvo, 14-Aug-2023.) |
bridi ko'a bu'a ko'e | ||
Theorem | bt 6 | Normal form for ternary selbri. (Contributed by la korvo, 14-Aug-2023.) |
bridi ko'a bu'a ko'e ko'i | ||
Theorem | bq 7 | Normal form for quaternary selbri. (Contributed by la korvo, 19-Mar-2024.) |
bridi ko'a bu'a ko'e ko'i ko'o | ||
Theorem | bp 8 | Normal form for quinary selbri. To avoid conflict with bq 7 this syntax is "bp" for "bridi pentad". (Contributed by la korvo, 22-Jun-2024.) |
bridi ko'a bu'a ko'e ko'i ko'o ko'u | ||
We start with the most fundamental connective, {ganai}, which denotes implication. We will build combinators from the SK basis, which is universal over parametric combinators. This gives us both an enormous degree of flexibility, because we may build any well-typed combinator, as well as confidence in correctness, because the SK basis is well-studied. We also require a single inference-building rule, ax-mp 10. In terms of category theory, {ganai broda gi brode} is an arrow in a syntactic category of equivalence classes of bridi, and the bridi {broda} and {brode} are objects. Note that, since we are using metavariables to denote bridi, we automatically denote equivalence classes. | ||
Syntax | bgan 9 | If {broda} and {brode} are bridi, then so is {ganai broda gi brode}. In terms of category theory, our category of bridi is closed. |
bridi ganai broda gi brode | ||
Axiom | ax-mp 10 | Because {ganai} encodes a syllogism, it may be eliminated by modus ponens. In terms of categorical logic, {broda} implies {brode} and {broda} is assumed. |
⊢ broda ⊢ ganai broda gi brode ⊢ brode | ||
Axiom | ax-k 11 | The principle of simplification. Known as the constant combinator, or K, in combinator calculus. Axiom ax-1 in [ILE] p. 0. |
⊢ ganai broda gi ganai brode gi broda | ||
Theorem | ki 12 | Inference form of ax-k 11 (Contributed by la korvo, 27-Jul-2023.) |
⊢ broda ⊢ ganai brode gi broda | ||
Theorem | kii 13 | Inference form of ki 12 (Contributed by la korvo, 27-Jul-2023.) |
⊢ broda ⊢ brode ⊢ broda | ||
Axiom | ax-s 14 | Frege's axiom. Known as the S combinator in combinator calculus. Axiom ax-2 in [ILE] p. 0. |
⊢ ganai ganai broda gi ganai brode gi brodi gi ganai ganai broda gi brode gi ganai broda gi brodi | ||
Theorem | si 15 | Inference form of ax-s 14 (Contributed by la korvo, 27-Jul-2023.) |
⊢ ganai broda gi ganai brode gi brodi ⊢ ganai ganai broda gi brode gi ganai broda gi brodi | ||
Theorem | mpd 16 | Deductive form of ax-mp 10 (Contributed by la korvo, 27-Jul-2023.) |
⊢ ganai broda gi brode ⊢ ganai broda gi ganai brode gi brodi ⊢ ganai broda gi brodi | ||
Theorem | id 17 | The principle of identity. This is distantly related to, but not the same as, the identity relation df-du 197. In terms of category theory, this proves that identity arrows exist. (Contributed by la korvo, 27-Jul-2023.) |
⊢ ganai broda gi broda | ||
Theorem | syl 18 | The quintessential syllogism. This inference is a standard workhorse for producing deductive forms. In terms of category theory, it composes arrows. (Contributed by la korvo, 30-Jul-2023.) |
⊢ ganai broda gi brode ⊢ ganai brode gi brodi ⊢ ganai broda gi brodi | ||
Theorem | sd 19 | Deductive form of ax-s 14 (Contributed by la korvo, 31-Jul-2023.) |
⊢ ganai broda gi ganai brode gi ganai brodi gi brodo ⊢ ganai broda gi ganai ganai brode gi brodi gi ganai brode gi brodo | ||
Theorem | mpdd 20 | Nested form of mpd 16 (Contributed by la korvo, 31-Jul-2023.) |
⊢ ganai broda gi ganai brode gi brodi ⊢ ganai broda gi ganai brode gi ganai brodi gi brodo ⊢ ganai broda gi ganai brode gi brodo | ||
Theorem | sylcom 21 | A syllogism which shuffles antecedents. (Contributed by la korvo, 30-Jul-2023.) |
⊢ ganai broda gi ganai brode gi brodi ⊢ ganai brode gi ganai brodi gi brodo ⊢ ganai broda gi ganai brode gi brodo | ||
Theorem | syl6 22 | A syllogism replacing consequents. (Contributed by la korvo, 31-Jul-2023.) |
⊢ ganai broda gi ganai brode gi brodi ⊢ ganai brodi gi brodo ⊢ ganai broda gi ganai brode gi brodo | ||
Theorem | syl6c 23 | A contractive variant of syl6 22 (Contributed by la korvo, 31-Jul-2023.) |
⊢ ganai broda gi ganai brode gi brodi ⊢ ganai broda gi ganai brode gi brodo ⊢ ganai brodi gi ganai brodo gi brodu ⊢ ganai broda gi ganai brode gi brodu | ||
Theorem | kd 24 | Deductive form of ax-k 11 Theorem a1d in [ILE] p. 0. (Contributed by la korvo, 30-Jul-2023.) |
⊢ ganai broda gi brode ⊢ ganai broda gi ganai brodi gi brode | ||
Theorem | syl5com 25 | A syllogism which shuffles antecedents. (Contributed by la korvo, 30-Jul-2023.) |
⊢ ganai broda gi brode ⊢ ganai brodi gi ganai brode gi brodo ⊢ ganai broda gi ganai brodi gi brodo | ||
Theorem | ganai-swap12 26 | Naturally swap the first and second antecedents in an internalized inference. Theorem com12 in [ILE] p. 0. (Contributed by la korvo, 30-Jul-2023.) |
⊢ ganai broda gi ganai brode gi brodi ⊢ ganai brode gi ganai broda gi brodi | ||
Theorem | syl5 27 | A syllogism which shuffles antecedents. (Contributed by la korvo, 31-Jul-2023.) |
⊢ ganai broda gi brode ⊢ ganai brodi gi ganai brode gi brodo ⊢ ganai brodi gi ganai broda gi brodo | ||
Theorem | syl2im 28 | Replace two antecedents in parallel. (Contributed by la korvo, 31-Jul-2023.) |
⊢ ganai broda gi brode ⊢ ganai brodi gi brodo ⊢ ganai brode gi ganai brodo gi brodu ⊢ ganai broda gi ganai brodi gi brodu | ||
Theorem | ganai-abs 29 | Absorb a redundant antecedent. (Contributed by la korvo, 30-Jul-2023.) |
⊢ ganai broda gi ganai broda gi brode ⊢ ganai broda gi brode | ||
Theorem | sylc 30 | A contracting syllogism. (Contributed by la korvo, 31-Jul-2023.) |
⊢ ganai broda gi brode ⊢ ganai broda gi brodi ⊢ ganai brode gi ganai brodi gi brodo ⊢ ganai broda gi brodo | ||
Theorem | mpi 31 | A nested modus ponens. Theorem mpi in [ILE] p. 0. (Contributed by la korvo, 27-Jul-2023.) |
⊢ broda ⊢ ganai brode gi ganai broda gi brodi ⊢ ganai brode gi brodi | ||
Theorem | mp2 32 | Double modus ponens. Theorem mp2 in [ILE] p. 0. (Contributed by la korvo, 27-Jul-2023.) |
⊢ broda ⊢ brode ⊢ ganai broda gi ganai brode gi brodi ⊢ brodi | ||
Syntax | bge 33 |
|
bridi ge broda gi brode | ||
Axiom | ax-ge-le 34 | Elimination of {ge} on the left. Curry of the left-hand projection. Axiom ax-ia1 in [ILE] p. 0. |
⊢ ganai ge broda gi brode gi broda | ||
Axiom | ax-ge-re 35 | Elimination of {ge} on the right. Curry of the right-hand projection. Axiom ax-ia2 in [ILE] p. 0. |
⊢ ganai ge broda gi brode gi brode | ||
Axiom | ax-ge-in 36 | Introduction of {ge}. Curry of the I combinator. Axiom ax-ia3 in [ILE] p. 0. |
⊢ ganai broda gi ganai brode gi ge broda gi brode | ||
Theorem | ge-lei 37 | Inference form of ax-ge-le 34 (Contributed by la korvo, 27-Jul-2023.) |
⊢ ge broda gi brode ⊢ broda | ||
Theorem | ge-led 38 | Deductive form of ax-ge-le 34 (Contributed by la korvo, 31-Jul-2023.) |
⊢ ganai broda gi ge brode gi brodi ⊢ ganai broda gi brode | ||
Theorem | ge-rei 39 | Inference form of ax-ge-re 35 (Contributed by la korvo, 27-Jul-2023.) |
⊢ ge broda gi brode ⊢ brode | ||
Theorem | ge-red 40 | Deductive form of ax-ge-re 35 (Contributed by la korvo, 31-Jul-2023.) |
⊢ ganai broda gi ge brode gi brodi ⊢ ganai broda gi brodi | ||
Theorem | ge-ini 41 | Inference form of ax-ge-in 36 (Contributed by la korvo, 27-Jul-2023.) |
⊢ broda ⊢ brode ⊢ ge broda gi brode | ||
Theorem | ge-ganai 42 | Conjunction implies implication. Theorem pm3.4 in [ILE] p. 0. (Contributed by la korvo, 22-Jun-2024.) |
⊢ ganai ge broda gi brode gi ganai broda gi brode | ||
Theorem | ge-in-swap12 43 | ax-ge-in 36 with swapped antecedents. (Contributed by la korvo, 31-Jul-2023.) |
⊢ ganai broda gi ganai brode gi ge brode gi broda | ||
Theorem | cur 44 | The natural curry (or "import") for any well-formed statement. Theorem imp in [ILE] p. 0. (Contributed by la korvo, 31-Jul-2023.) |
⊢ ganai broda gi ganai brode gi brodi ⊢ ganai ge broda gi brode gi brodi | ||
Theorem | uncur 45 | The natural uncurry (or "export") for any well-formed statement. Theorem ex in [ILE] p. 0. (Contributed by la korvo, 31-Jul-2023.) |
⊢ ganai ge broda gi brode gi brodi ⊢ ganai broda gi ganai brode gi brodi | ||
Theorem | jca 46 | "Join Consequents with AND". (Contributed by la korvo, 22-Jun-2024.) |
⊢ ganai broda gi brode ⊢ ganai broda gi brodi ⊢ ganai broda gi ge brode gi brodi | ||
Theorem | syl2anc 47 | A contracting syllogism. (Contributed by la korvo, 31-Jul-2023.) |
⊢ ganai broda gi brode ⊢ ganai broda gi brodi ⊢ ganai ge brode gi brodi gi brodo ⊢ ganai broda gi brodo | ||
Theorem | mpancom 48 | A variant of mpan 49 (Contributed by la korvo, 31-Jul-2023.) |
⊢ ganai broda gi brode ⊢ ganai ge brode gi broda gi brodi ⊢ ganai broda gi brodi | ||
Theorem | mpan 49 | An inference eliminating a conjunction from the antecedent. (Contributed by la korvo, 31-Jul-2023.) |
⊢ broda ⊢ ganai ge broda gi brode gi brodi ⊢ ganai brode gi brodi | ||
Theorem | mp2an 50 | An inference eliminating a conjunction from the antecedent. (Contributed by la korvo, 31-Jul-2023.) |
⊢ broda ⊢ brode ⊢ ganai ge broda gi brode gi brodi ⊢ brodi | ||
Syntax | bgo 51 | If {broda} and {brode} are bridi, then so is {go broda gi brode}. |
bridi go broda gi brode | ||
Definition | df-go 52 | Definition of {go} in terms of {ganai} and {ge}. This is the standard definition of the biconditional connective in higher-order intuitionistic logic. This can be justified intuitionistically; see theorem df-bi along with bijust from [ILE] p. 0. |
⊢ ge ganai go broda gi brode gi ge ganai broda gi brode gi ganai brode gi broda gi ganai ge ganai broda gi brode gi ganai brode gi broda gi go broda gi brode | ||
Theorem | goli 53 | Inference form of left side of df-go 52 (Contributed by la korvo, 29-Jul-2023.) |
⊢ go broda gi brode ⊢ ge ganai broda gi brode gi ganai brode gi broda | ||
Theorem | go-ganai 54 | Biconditional implication may be weakened to unidirectional implication. Category-theoretically, this theorem embeds the core of Loj. Inference form of left side of goli 53. Theorem biimpi in [ILE] p. 0. (Contributed by la korvo, 17-Jul-2023.) (Shortened by la korvo, 29-Jul-2023.) |
⊢ go broda gi brode ⊢ ganai broda gi brode | ||
Theorem | gori 55 | Inference form of right side of df-go 52 (Contributed by la korvo, 30-Jul-2023.) |
⊢ ge ganai broda gi brode gi ganai brode gi broda ⊢ go broda gi brode | ||
Theorem | iso 56 | Inference form of right side of gori 55 (Contributed by la korvo, 30-Jul-2023.) |
⊢ ganai broda gi brode ⊢ ganai brode gi broda ⊢ go broda gi brode | ||
Theorem | bi1 57 | Property of biconditionals. (Contributed by la korvo, 31-Jul-2023.) |
⊢ ganai go broda gi brode gi ganai broda gi brode | ||
Theorem | bi2 58 | Property of biconditionals. (Contributed by la korvo, 31-Jul-2023.) |
⊢ ganai go broda gi brode gi ganai brode gi broda | ||
Theorem | bi3 59 | Property of biconditionals. (Contributed by la korvo, 31-Jul-2023.) |
⊢ ganai ganai broda gi brode gi ganai ganai brode gi broda gi go broda gi brode | ||
Theorem | isodd 60 | Double deduction form of iso 56 (Contributed by la korvo, 31-Jul-2023.) |
⊢ ganai broda gi ganai brode gi ganai brodi gi brodo ⊢ ganai broda gi ganai brode gi ganai brodo gi brodi ⊢ ganai broda gi ganai brode gi go brodi gi brodo | ||
Theorem | isod-lem 61 | Lemma for isod 62 known as theorem impbid21d in [ILE] p. 0. (Contributed by la korvo, 31-Jul-2023.) [Auxiliary lemma - not displayed.] |
Theorem | isod 62 | Deduction form of iso 56 Theorem impbid in [ILE] p. 0. (Contributed by la korvo, 31-Jul-2023.) |
⊢ ganai broda gi ganai brode gi brodi ⊢ ganai broda gi ganai brodi gi brode ⊢ ganai broda gi go brode gi brodi | ||
Theorem | go-id 63 | {go} is reflexive. Theorem equid in [ILE] p. 0. (Contributed by la korvo, 30-Jul-2023.) |
⊢ go broda gi broda | ||
Theorem | go-com-lem 64 | Lemma: {go} commutes in one direction. (Contributed by la korvo, 31-Jul-2023.) |
⊢ ganai go broda gi brode gi go brode gi broda | ||
Theorem | go-com 65 | {go} commutes. (Contributed by la korvo, 17-Aug-2023.) |
⊢ go go broda gi brode gi go brode gi broda | ||
Theorem | go-comi 66 | Inference form of go-com 65 Theorem bicomi in [ILE] p. 0. (Contributed by la korvo, 31-Jul-2023.) |
⊢ go broda gi brode ⊢ go brode gi broda | ||
Axiom | ax-go-trans 67 | {go} is transitive. |
⊢ go broda gi brode ⊢ go brode gi brodi ⊢ go broda gi brodi | ||
Theorem | go-syl 68 | {go} admits composition. (Contributed by la korvo, 16-Aug-2023.) |
⊢ go broda gi brode ⊢ go brode gi brodi ⊢ go broda gi brodi | ||
Theorem | bi 69 | Like modus ponens ax-mp 10 but for biconditionals. (Contributed by la korvo, 16-Jul-2023.) |
⊢ broda ⊢ go broda gi brode ⊢ brode | ||
Theorem | bi-rev 70 | Modus ponens in the other direction. Theorem mpbir in [ILE] p. 0. (Contributed by la korvo, 16-Jul-2023.) |
⊢ broda ⊢ go brode gi broda ⊢ brode | ||
Theorem | bi-rev-syl 71 | The right-hand side of a {go} may also be weakened to a {ganai}. Theorem biimpri in [ILE] p. 0. (Contributed by la korvo, 10-Jul-2023.) |
⊢ go broda gi brode ⊢ ganai brode gi broda | ||
Theorem | sylbi 72 | Syllogism with a biconditional. (Contributed by la korvo, 25-Jun-2024.) |
⊢ go broda gi brode ⊢ ganai brode gi brodi ⊢ ganai broda gi brodi | ||
Theorem | sylib 73 | Syllogism with a biconditional. (Contributed by la korvo, 25-Jun-2024.) |
⊢ ganai broda gi brode ⊢ go brode gi brodi ⊢ ganai broda gi brodi | ||
Theorem | sylibr 74 | Apply a definition to a consequent. Theorem sylibr in [ILE] p. 0. (Contributed by la korvo, 22-Jun-2024.) |
⊢ ganai broda gi brode ⊢ go brodi gi brode ⊢ ganai broda gi brodi | ||
Theorem | sylanbrc 75 | Deductive unpacking of a definition with conjoined components. Theorem sylanbrc in [ILE] p. 0. (Contributed by la korvo, 22-Jun-2024.) |
⊢ ganai broda gi brode ⊢ ganai broda gi brodi ⊢ go brodo gi ge brode gi brodi ⊢ ganai broda gi brodo | ||
Theorem | syl5bi 76 | Replace a nested antecedent using a biconditional. (Contributed by la korvo, 22-Jun-2024.) |
⊢ go broda gi brode ⊢ ganai brodi gi ganai brode gi brodo ⊢ ganai brodi gi ganai broda gi brodo | ||
Unlike the other four connectives, {ganai} is not symmetric. As a result, Lojban's grammar admits both a left-to-right and right-to-left version of each connective for implication. | ||
Syntax | sjnaa 77 |
|
sumti ko'a na.a ko'e | ||
Definition | df-na.a 78 | Definition of {na.a} in terms of {ganai}. By analogy with forethought version of example 12.2-5 from [CLL] p. 14. |
⊢ go ko'a na.a ko'e bo'a gi ganai ko'a bo'a gi ko'e bo'a | ||
Theorem | naai 79 | Inference form of df-na.a 78 (Contributed by la korvo, 17-Aug-2023.) |
⊢ ko'a na.a ko'e bo'a ⊢ ganai ko'a bo'a gi ko'e bo'a | ||
Theorem | naaii 80 | Inference form of df-na.a 78 (Contributed by la korvo, 17-Aug-2023.) |
⊢ ko'a na.a ko'e bo'a ⊢ ko'a bo'a ⊢ ko'e bo'a | ||
Theorem | naari 81 | Reverse inference form of df-na.a 78 (Contributed by la korvo, 17-Aug-2023.) |
⊢ ganai ko'a bo'a gi ko'e bo'a ⊢ ko'a na.a ko'e bo'a | ||
Theorem | na.a-refl 82 | {na.a} is reflexive over any brirebla. (Contributed by la korvo, 14-Aug-2024.) |
⊢ ko'a na.a ko'a bo'a | ||
Syntax | sjanai 83 |
|
sumti ko'a .anai ko'e | ||
Definition | df-anai 84 | Definition of {.anai} in terms of {ganai}. By analogy with forethought version of example 12.2-5 from [CLL] p. 14. |
⊢ go ko'e .anai ko'a bo'a gi ganai ko'a bo'a gi ko'e bo'a | ||
Theorem | anaii 85 | Inference form of df-anai 84 (Contributed by la korvo, 16-Aug-2023.) |
⊢ ko'e .anai ko'a bo'a ⊢ ganai ko'a bo'a gi ko'e bo'a | ||
Theorem | anaiii 86 | Inference form of df-anai 84 (Contributed by la korvo, 16-Aug-2023.) |
⊢ ko'e .anai ko'a bo'a ⊢ ko'a bo'a ⊢ ko'e bo'a | ||
Theorem | anairi 87 | Reverse inference form of df-anai 84 (Contributed by la korvo, 16-Aug-2023.) |
⊢ ganai ko'a bo'a gi ko'e bo'a ⊢ ko'e .anai ko'a bo'a | ||
Syntax | sbnaja 88* |
|
selbri bu'a naja bu'e | ||
Definition | df-naja 89* | Definition of {naja} in terms of {ganai}. By analogy with example 12.2-5 of [CLL] p. 14. |
⊢ go ko'a bu'a naja bu'e ko'e gi ganai ko'a bu'a ko'e gi ko'a bu'e ko'e | ||
Theorem | najai 90* | Inference form of df-naja 89 (Contributed by la korvo, 17-Aug-2023.) |
⊢ ko'a bu'a naja bu'e ko'e ⊢ ganai ko'a bu'a ko'e gi ko'a bu'e ko'e | ||
Theorem | najaii 91* | Inference form of df-naja 89 (Contributed by la korvo, 17-Aug-2023.) |
⊢ ko'a bu'a naja bu'e ko'e ⊢ ko'a bu'a ko'e ⊢ ko'a bu'e ko'e | ||
Theorem | najari 92* | Reverse inference form of df-naja 89 (Contributed by la korvo, 17-Aug-2023.) |
⊢ ganai ko'a bu'a ko'e gi ko'a bu'e ko'e ⊢ ko'a bu'a naja bu'e ko'e | ||
Definition | df-naja-t 93* | Extension of df-naja 89 to ternary bridi. |
⊢ go ko'a bu'a naja bu'e ko'e ko'i gi ganai ko'a bu'a ko'e ko'i gi ko'a bu'e ko'e ko'i | ||
Syntax | sbjanai 94* |
|
selbri bu'a janai bu'e | ||
Definition | df-janai 95* | Definition of {janai} in terms of {ganai}. By analogy with example 12.2-5 of [CLL] p. 14. |
⊢ go ko'a bu'e janai bu'a ko'e gi ganai ko'a bu'a ko'e gi ko'a bu'e ko'e | ||
Theorem | janaii 96* | Inference form of df-janai 95 (Contributed by la korvo, 16-Aug-2023.) |
⊢ ko'a bu'e janai bu'a ko'e ⊢ ganai ko'a bu'a ko'e gi ko'a bu'e ko'e | ||
Theorem | janaiii 97* | Inference form of df-janai 95 (Contributed by la korvo, 16-Aug-2023.) |
⊢ ko'a bu'e janai bu'a ko'e ⊢ ko'a bu'a ko'e ⊢ ko'a bu'e ko'e | ||
Theorem | janairi 98* | Reverse inference form of df-janai 95 (Contributed by la korvo, 16-Aug-2023.) |
⊢ ganai ko'a bu'a ko'e gi ko'a bu'e ko'e ⊢ ko'a bu'e janai bu'a ko'e | ||
Syntax | tnagiha 99 |
|
brirebla bo'a nagi'a bo'e | ||
Definition | df-nagiha 100 | Definition of {nagi'a} in terms of {ganai}. |
⊢ go ko'a bo'a nagi'a bo'e gi ganai ko'a bo'a gi ko'a bo'e |
< Previous Next > |
Copyright terms: Public domain | < Previous Next > |