HomeHome brismu bridi
Theorem List (p. 1 of 9)
< Previous  Next >

Mirrors  >  Metamath Home Page  >  Home Page  >  Theorem List Contents       This page: Page List

Theorem List for brismu bridi - 1-100   *Has distinct variable group(s)
TypeLabelDescription
Statement
 
PART 1  LOGICAL CONNECTIVES

We start by internalizing five standard logical connectives: {ganai}, {ge}, {go}, {ga}, and {gonai}. We will use these connectives to provide a basic logical framework for defining selbri and proving bridi.

 
1.1  Basic syntax

Before logic, we must define some basic elements of syntax: bridi, selbri, and sumti. We will also embrace some experimental concepts not named in the baseline valsi, but exposed in the baseline grammar: prenexes and bridi-tails.

 
Syntaxtsb 1 Any selbri is a valid brirebla.
brirebla bu'a
 
Syntaxtss 2 Any brirebla can have an additional trailing sumti.
brirebla bo'a   =>   brirebla bo'a ko'a
 
Syntaxbtb 3 Build a bridi from a sumti and brirebla.
bridi ko'a bo'a
 
Theorembu 4 Normal form for unary selbri. (Contributed by la korvo, 14-Aug-2023.)
bridi ko'a bu'a
 
Theorembb 5 Normal form for binary selbri. (Contributed by la korvo, 14-Aug-2023.)
bridi ko'a bu'a ko'e
 
Theorembt 6 Normal form for ternary selbri. (Contributed by la korvo, 14-Aug-2023.)
bridi ko'a bu'a ko'e ko'i
 
Theorembq 7 Normal form for quaternary selbri. (Contributed by la korvo, 19-Mar-2024.)
bridi ko'a bu'a ko'e ko'i ko'o
 
Theorembp 8 Normal form for quinary selbri. To avoid conflict with bq 7 this syntax is "bp" for "bridi pentad". (Contributed by la korvo, 22-Jun-2024.)
bridi ko'a bu'a ko'e ko'i ko'o ko'u
 
1.2  Implication I: {ganai}

We start with the most fundamental connective, {ganai}, which denotes implication. We will build combinators from the SK basis, which is universal over parametric combinators. This gives us both an enormous degree of flexibility, because we may build any well-typed combinator, as well as confidence in correctness, because the SK basis is well-studied.

We also require a single inference-building rule, ax-mp 10.

In terms of category theory, {ganai broda gi brode} is an arrow in a syntactic category of equivalence classes of bridi, and the bridi {broda} and {brode} are objects. Note that, since we are using metavariables to denote bridi, we automatically denote equivalence classes.

 
Syntaxbgan 9 If {broda} and {brode} are bridi, then so is {ganai broda gi brode}. In terms of category theory, our category of bridi is closed.
bridi ganai broda gi brode
 
Axiomax-mp 10 Because {ganai} encodes a syllogism, it may be eliminated by modus ponens. In terms of categorical logic, {broda} implies {brode} and {broda} is assumed.
broda   &   ⊢ ganai broda gi brode   =>   ⊢ brode
 
Axiomax-k 11 The principle of simplification. Known as the constant combinator, or K, in combinator calculus.
ganai broda gi ganai brode gi broda
 
Theoremki 12 Inference form of ax-k 11 (Contributed by la korvo, 27-Jul-2023.)
broda   =>   ⊢ ganai brode gi broda
 
Theoremmpki 13 Discharge a proven antecedent and replace it with another one. (Contributed by la korvo, 4-Jan-2025.)
broda   &   ⊢ ganai broda gi brode   =>   ⊢ ganai brodi gi brode
 
Theoremkii 14 Inference form of ki 12 (Contributed by la korvo, 27-Jul-2023.)
broda   &   ⊢ brode   =>   ⊢ broda
 
Axiomax-s 15 Frege's axiom. Known as the S combinator in combinator calculus.
ganai ganai broda gi ganai brode gi brodi gi ganai ganai broda gi brode gi ganai broda gi brodi
 
Theoremsi 16 Inference form of ax-s 15 (Contributed by la korvo, 27-Jul-2023.)
ganai broda gi ganai brode gi brodi   =>   ⊢ ganai ganai broda gi brode gi ganai broda gi brodi
 
Theoremmpd 17 Deductive form of ax-mp 10 (Contributed by la korvo, 27-Jul-2023.)
ganai broda gi brode   &   ⊢ ganai broda gi ganai brode gi brodi   =>   ⊢ ganai broda gi brodi
 
Theoremid 18 The principle of identity. This is distantly related to, but not the same as, the identity relation df-du 215. In terms of category theory, this proves that identity arrows exist. (Contributed by la korvo, 27-Jul-2023.)
ganai broda gi broda
 
Theoremidd 19 Deduction form of id 18 (Contributed by la korvo, 4-Jan-2025.)
ganai broda gi ganai brode gi brode
 
Theoremsyl 20 The quintessential syllogism. This inference is a standard workhorse for producing deductive forms. In terms of category theory, it composes arrows. (Contributed by la korvo, 30-Jul-2023.)
ganai broda gi brode   &   ⊢ ganai brode gi brodi   =>   ⊢ ganai broda gi brodi
 
Theoremsd 21 Deductive form of ax-s 15 (Contributed by la korvo, 31-Jul-2023.)
ganai broda gi ganai brode gi ganai brodi gi brodo   =>   ⊢ ganai broda gi ganai ganai brode gi brodi gi ganai brode gi brodo
 
Theoremmpdd 22 Nested form of mpd 17 (Contributed by la korvo, 31-Jul-2023.)
ganai broda gi ganai brode gi brodi   &   ⊢ ganai broda gi ganai brode gi ganai brodi gi brodo   =>   ⊢ ganai broda gi ganai brode gi brodo
 
Theoremsylcom 23 A syllogism which shuffles antecedents. (Contributed by la korvo, 30-Jul-2023.)
ganai broda gi ganai brode gi brodi   &   ⊢ ganai brode gi ganai brodi gi brodo   =>   ⊢ ganai broda gi ganai brode gi brodo
 
Theoremsyl6 24 A syllogism replacing consequents. (Contributed by la korvo, 31-Jul-2023.)
ganai broda gi ganai brode gi brodi   &   ⊢ ganai brodi gi brodo   =>   ⊢ ganai broda gi ganai brode gi brodo
 
Theoremsyl6c 25 A contractive variant of syl6 24 (Contributed by la korvo, 31-Jul-2023.)
ganai broda gi ganai brode gi brodi   &   ⊢ ganai broda gi ganai brode gi brodo   &   ⊢ ganai brodi gi ganai brodo gi brodu   =>   ⊢ ganai broda gi ganai brode gi brodu
 
Theoremkd 26 Deductive form of ax-k 11 (Contributed by la korvo, 30-Jul-2023.)
ganai broda gi brode   =>   ⊢ ganai broda gi ganai brodi gi brode
 
Theoremsyl5com 27 A syllogism which shuffles antecedents. (Contributed by la korvo, 30-Jul-2023.)
ganai broda gi brode   &   ⊢ ganai brodi gi ganai brode gi brodo   =>   ⊢ ganai broda gi ganai brodi gi brodo
 
Theoremganai-swap12 28 Naturally swap the first and second antecedents in an internalized inference. (Contributed by la korvo, 30-Jul-2023.)
ganai broda gi ganai brode gi brodi   =>   ⊢ ganai brode gi ganai broda gi brodi
 
Theoremmpc 29 A closed version of ax-mp 10 (Contributed by la korvo, 1-Jan-2025.)
ganai broda gi ganai ganai broda gi brode gi brode
 
Theoremsyl5 30 A syllogism which shuffles antecedents. (Contributed by la korvo, 31-Jul-2023.)
ganai broda gi brode   &   ⊢ ganai brodi gi ganai brode gi brodo   =>   ⊢ ganai brodi gi ganai broda gi brodo
 
Theoremsyl2im 31 Replace two antecedents in parallel. (Contributed by la korvo, 31-Jul-2023.)
ganai broda gi brode   &   ⊢ ganai brodi gi brodo   &   ⊢ ganai brode gi ganai brodo gi brodu   =>   ⊢ ganai broda gi ganai brodi gi brodu
 
Theoremganai-abs 32 Absorb a redundant antecedent. (Contributed by la korvo, 30-Jul-2023.)
ganai broda gi ganai broda gi brode   =>   ⊢ ganai broda gi brode
 
Theoremsylc 33 A contracting syllogism. (Contributed by la korvo, 31-Jul-2023.)
ganai broda gi brode   &   ⊢ ganai broda gi brodi   &   ⊢ ganai brode gi ganai brodi gi brodo   =>   ⊢ ganai broda gi brodo
 
Theoremmpi 34 A nested modus ponens. (Contributed by la korvo, 27-Jul-2023.)
broda   &   ⊢ ganai brode gi ganai broda gi brodi   =>   ⊢ ganai brode gi brodi
 
Theoremmp2 35 Double modus ponens. (Contributed by la korvo, 27-Jul-2023.)
broda   &   ⊢ brode   &   ⊢ ganai broda gi ganai brode gi brodi   =>   ⊢ brodi
 
Theoremimim2d 36 A deduction. (Contributed by la korvo, 1-Jan-2025.)
ganai broda gi ganai brode gi brodi   =>   ⊢ ganai broda gi ganai ganai brodo gi brode gi ganai brodo gi brodi
 
Theoremimim2 37 A closed syllogism. (Contributed by la korvo, 1-Jan-2025.)
ganai ganai broda gi brode gi ganai ganai brodi gi broda gi ganai brodi gi brode
 
Theoremsyldd 38 Deduction form of syld (future) (Contributed by la korvo, 1-Jan-2025.)
ganai broda gi ganai brode gi ganai brodi gi brodo   &   ⊢ ganai broda gi ganai brode gi ganai brodo gi brodu   =>   ⊢ ganai broda gi ganai brode gi ganai brodi gi brodu
 
Theoremsyl5d 39 Deduction form of syl5 30 (Contributed by la korvo, 1-Jan-2025.)
ganai broda gi ganai brode gi brodi   &   ⊢ ganai broda gi ganai brodo gi ganai brodi gi brodu   =>   ⊢ ganai broda gi ganai brodo gi ganai brode gi brodu
 
Theoremsyl9 40 A syllogism. (Contributed by la korvo, 1-Jan-2025.)
ganai broda gi ganai brode gi brodi   &   ⊢ ganai brodo gi ganai brodi gi brodu   =>   ⊢ ganai broda gi ganai brodo gi ganai brode gi brodu
 
Theoremganai-swap23 41 Naturally swap the second and third antecedents in an internalized inference. (Contributed by la korvo, 30-Jul-2023.)
ganai broda gi ganai brode gi ganai brodi gi brodo   =>   ⊢ ganai broda gi ganai brodi gi ganai brode gi brodo
 
1.3  Conjunctions I: {ge}
 
Syntaxbge 42

bridi ge broda gi brode
 
Axiomax-ge-le 43 Elimination of {ge} on the left. Curry of the left-hand projection.
ganai ge broda gi brode gi broda
 
Axiomax-ge-re 44 Elimination of {ge} on the right. Curry of the right-hand projection.

ganai ge broda gi brode gi brode
 
Axiomax-ge-in 45 Introduction of {ge}. Curry of the I combinator.
ganai broda gi ganai brode gi ge broda gi brode
 
Theoremge-lei 46 Inference form of ax-ge-le 43 (Contributed by la korvo, 27-Jul-2023.)
ge broda gi brode   =>   ⊢ broda
 
Theoremge-led 47 Deductive form of ax-ge-le 43 (Contributed by la korvo, 31-Jul-2023.)
ganai broda gi ge brode gi brodi   =>   ⊢ ganai broda gi brode
 
Theoremge-rei 48 Inference form of ax-ge-re 44 (Contributed by la korvo, 27-Jul-2023.)
ge broda gi brode   =>   ⊢ brode
 
Theoremge-red 49 Deductive form of ax-ge-re 44 (Contributed by la korvo, 31-Jul-2023.)
ganai broda gi ge brode gi brodi   =>   ⊢ ganai broda gi brodi
 
Theoremge-ini 50 Inference form of ax-ge-in 45 (Contributed by la korvo, 27-Jul-2023.)
broda   &   ⊢ brode   =>   ⊢ ge broda gi brode
 
Theoremge-ganai 51 Conjunction implies implication. (Contributed by la korvo, 22-Jun-2024.)
ganai ge broda gi brode gi ganai broda gi brode
 
Theoremge-in-swap12 52 ax-ge-in 45 with swapped antecedents. (Contributed by la korvo, 31-Jul-2023.)
ganai broda gi ganai brode gi ge brode gi broda
 
Theoremcur 53 The natural curry (or "import") for any well-formed statement. (Contributed by la korvo, 31-Jul-2023.)
ganai broda gi ganai brode gi brodi   =>   ⊢ ganai ge broda gi brode gi brodi
 
Theoremuncur 54 The natural uncurry (or "export") for any well-formed statement. (Contributed by la korvo, 31-Jul-2023.)
ganai ge broda gi brode gi brodi   =>   ⊢ ganai broda gi ganai brode gi brodi
 
Theoremjca 55 "Join Consequents with AND". (Contributed by la korvo, 22-Jun-2024.)
ganai broda gi brode   &   ⊢ ganai broda gi brodi   =>   ⊢ ganai broda gi ge brode gi brodi
 
Theoremsyl2anc 56 A contracting syllogism. (Contributed by la korvo, 31-Jul-2023.)
ganai broda gi brode   &   ⊢ ganai broda gi brodi   &   ⊢ ganai ge brode gi brodi gi brodo   =>   ⊢ ganai broda gi brodo
 
Theoremmpancom 57 A variant of mpan 58 (Contributed by la korvo, 31-Jul-2023.)
ganai broda gi brode   &   ⊢ ganai ge brode gi broda gi brodi   =>   ⊢ ganai broda gi brodi
 
Theoremmpan 58 An inference eliminating a conjunction from the antecedent. (Contributed by la korvo, 31-Jul-2023.)
broda   &   ⊢ ganai ge broda gi brode gi brodi   =>   ⊢ ganai brode gi brodi
 
Theoremmp2an 59 An inference eliminating a conjunction from the antecedent. (Contributed by la korvo, 31-Jul-2023.)
broda   &   ⊢ brode   &   ⊢ ganai ge broda gi brode gi brodi   =>   ⊢ brodi
 
1.4  Biconditionals I: {go}
 
Syntaxbgo 60 If {broda} and {brode} are bridi, then so is {go broda gi brode}.
bridi go broda gi brode
 
Definitiondf-go 61 Definition of {go} in terms of {ganai} and {ge}. This is the standard definition of the biconditional connective in higher-order intuitionistic logic. This can be justified intuitionistically; see theorem df-bi along with bijust from [ILE] p. 0.
ge ganai go broda gi brode gi ge ganai broda gi brode gi ganai brode gi broda gi ganai ge ganai broda gi brode gi ganai brode gi broda gi go broda gi brode
 
Theoremgoli 62 Inference form of left side of df-go 61 (Contributed by la korvo, 29-Jul-2023.)
go broda gi brode   =>   ⊢ ge ganai broda gi brode gi ganai brode gi broda
 
Theoremgo-ganai 63 Biconditional implication may be weakened to unidirectional implication. Category-theoretically, this theorem embeds the core of Loj. Inference form of left side of goli 62. (Contributed by la korvo, 17-Jul-2023.) (Shortened by la korvo, 29-Jul-2023.)
go broda gi brode   =>   ⊢ ganai broda gi brode
 
Theoremgori 64 Inference form of right side of df-go 61 (Contributed by la korvo, 30-Jul-2023.)
ge ganai broda gi brode gi ganai brode gi broda   =>   ⊢ go broda gi brode
 
Theoremiso 65 Inference form of right side of gori 64 (Contributed by la korvo, 30-Jul-2023.)
ganai broda gi brode   &   ⊢ ganai brode gi broda   =>   ⊢ go broda gi brode
 
Theorembi1 66 Property of biconditionals. (Contributed by la korvo, 31-Jul-2023.)
ganai go broda gi brode gi ganai broda gi brode
 
Theorembi2 67 Property of biconditionals. (Contributed by la korvo, 31-Jul-2023.)
ganai go broda gi brode gi ganai brode gi broda
 
Theorembi3 68 Property of biconditionals. (Contributed by la korvo, 31-Jul-2023.)
ganai ganai broda gi brode gi ganai ganai brode gi broda gi go broda gi brode
 
Theoremgo-ganaid 69 Deduction form of go-ganai 63 (Contributed by la korvo, 4-Jan-2025.)
ganai broda gi go brode gi brodi   =>   ⊢ ganai broda gi ganai brode gi brodi
 
Theoremisodd 70 Double deduction form of iso 65 (Contributed by la korvo, 31-Jul-2023.)
ganai broda gi ganai brode gi ganai brodi gi brodo   &   ⊢ ganai broda gi ganai brode gi ganai brodo gi brodi   =>   ⊢ ganai broda gi ganai brode gi go brodi gi brodo
 
Theoremisod-lem 71 Lemma for isod 72 known as theorem impbid21d in [ILE] p. 0. (Contributed by la korvo, 31-Jul-2023.) [Auxiliary lemma - not displayed.]
 
Theoremisod 72 Deduction form of iso 65 (Contributed by la korvo, 31-Jul-2023.)
ganai broda gi ganai brode gi brodi   &   ⊢ ganai broda gi ganai brodi gi brode   =>   ⊢ ganai broda gi go brode gi brodi
 
Theoremgo-id 73 {go} is reflexive. (Contributed by la korvo, 30-Jul-2023.)
go broda gi broda
 
Theoremgo-com-lem 74 Lemma: {go} commutes in one direction. (Contributed by la korvo, 31-Jul-2023.)
ganai go broda gi brode gi go brode gi broda
 
Theoremgo-com 75 {go} commutes. (Contributed by la korvo, 17-Aug-2023.)
go go broda gi brode gi go brode gi broda
 
Theoremgo-comi 76 Inference form of go-com 75 (Contributed by la korvo, 31-Jul-2023.)
go broda gi brode   =>   ⊢ go brode gi broda
 
Axiomax-go-trans 77 {go} is transitive.
go broda gi brode   &   ⊢ go brode gi brodi   =>   ⊢ go broda gi brodi
 
Theoremgo-syl 78 {go} admits composition. (Contributed by la korvo, 16-Aug-2023.)
go broda gi brode   &   ⊢ go brode gi brodi   =>   ⊢ go broda gi brodi
 
Theorembi 79 Like modus ponens ax-mp 10 but for biconditionals. (Contributed by la korvo, 16-Jul-2023.)
broda   &   ⊢ go broda gi brode   =>   ⊢ brode
 
Theorembi-rev 80 Modus ponens in the other direction. (Contributed by la korvo, 16-Jul-2023.)
broda   &   ⊢ go brode gi broda   =>   ⊢ brode
 
Theorembi-rev-syl 81 The right-hand side of a {go} may also be weakened to a {ganai}. (Contributed by la korvo, 10-Jul-2023.)
go broda gi brode   =>   ⊢ ganai brode gi broda
 
Theoremsylbi 82 Syllogism with a biconditional. (Contributed by la korvo, 25-Jun-2024.)
go broda gi brode   &   ⊢ ganai brode gi brodi   =>   ⊢ ganai broda gi brodi
 
Theoremsylib 83 Syllogism with a biconditional. (Contributed by la korvo, 25-Jun-2024.)
ganai broda gi brode   &   ⊢ go brode gi brodi   =>   ⊢ ganai broda gi brodi
 
Theoremsylibr 84 Apply a definition to a consequent. (Contributed by la korvo, 22-Jun-2024.)
ganai broda gi brode   &   ⊢ go brodi gi brode   =>   ⊢ ganai broda gi brodi
 
Theoremsylanbrc 85 Deductive unpacking of a definition with conjoined components. (Contributed by la korvo, 22-Jun-2024.)
ganai broda gi brode   &   ⊢ ganai broda gi brodi   &   ⊢ go brodo gi ge brode gi brodi   =>   ⊢ ganai broda gi brodo
 
Theoremsyl5bi 86 Replace a nested antecedent using a biconditional. (Contributed by la korvo, 22-Jun-2024.)
go broda gi brode   &   ⊢ ganai brodi gi ganai brode gi brodo   =>   ⊢ ganai brodi gi ganai broda gi brodo
 
1.5  Implication II

Unlike the other four connectives, {ganai} is not symmetric. As a result, Lojban's grammar admits both a left-to-right and right-to-left version of each connective for implication.

 
1.5.1  {na.a}
 
Syntaxsjnaa 87

sumti ko'a na.a ko'e
 
Definitiondf-na.a 88 Definition of {na.a} in terms of {ganai}. By analogy with forethought version of example 12.2-5 from [CLL] p. 14.
go ko'a na.a ko'e bo'a gi ganai ko'a bo'a gi ko'e bo'a
 
Theoremnaai 89 Inference form of df-na.a 88 (Contributed by la korvo, 17-Aug-2023.)
ko'a na.a ko'e bo'a   =>   ⊢ ganai ko'a bo'a gi ko'e bo'a
 
Theoremnaaii 90 Inference form of df-na.a 88 (Contributed by la korvo, 17-Aug-2023.)
ko'a na.a ko'e bo'a   &   ⊢ ko'a bo'a   =>   ⊢ ko'e bo'a
 
Theoremnaari 91 Reverse inference form of df-na.a 88 (Contributed by la korvo, 17-Aug-2023.)
ganai ko'a bo'a gi ko'e bo'a   =>   ⊢ ko'a na.a ko'e bo'a
 
Theoremna.a-refl 92 {na.a} is reflexive over any brirebla. (Contributed by la korvo, 14-Aug-2024.)
ko'a na.a ko'a bo'a
 
1.5.2  {.anai}
 
Syntaxsjanai 93

sumti ko'a .anai ko'e
 
Definitiondf-anai 94 Definition of {.anai} in terms of {ganai}. By analogy with forethought version of example 12.2-5 from [CLL] p. 14.
go ko'e .anai ko'a bo'a gi ganai ko'a bo'a gi ko'e bo'a
 
Theoremanaii 95 Inference form of df-anai 94 (Contributed by la korvo, 16-Aug-2023.)
ko'e .anai ko'a bo'a   =>   ⊢ ganai ko'a bo'a gi ko'e bo'a
 
Theoremanaiii 96 Inference form of df-anai 94 (Contributed by la korvo, 16-Aug-2023.)
ko'e .anai ko'a bo'a   &   ⊢ ko'a bo'a   =>   ⊢ ko'e bo'a
 
Theoremanairi 97 Reverse inference form of df-anai 94 (Contributed by la korvo, 16-Aug-2023.)
ganai ko'a bo'a gi ko'e bo'a   =>   ⊢ ko'e .anai ko'a bo'a
 
1.5.3  {naja}
 
Syntaxsbnaja 98*

selbri bu'a naja bu'e
 
Definitiondf-naja 99* Definition of {naja} in terms of {ganai}. By analogy with example 12.2-5 of [CLL] p. 14.
go ko'a bu'a naja bu'e ko'e gi ganai ko'a bu'a ko'e gi ko'a bu'e ko'e
 
Theoremnajai 100* Inference form of df-naja 99 (Contributed by la korvo, 17-Aug-2023.)
ko'a bu'a naja bu'e ko'e   =>   ⊢ ganai ko'a bu'a ko'e gi ko'a bu'e ko'e
    < Previous  Next >

Page List
Jump to page: Contents  1 1-100 2 101-200 3 201-300 4 301-400 5 401-500 6 501-600 7 601-700 8 701-800 9 801-827
  Copyright terms: Public domain < Previous  Next >