| brismu bridi |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > Home > Th. List > ge-pair | |||
| Description: A universal property of products: given two arrows in Loj, there is an arrow from the product of their sources to the product of their targets. (Contributed by la korvo, 9-Jul-2025.) |
| Ref | Expression |
|---|---|
| ge-pair.0 | ⊢ ganai broda gi brode |
| ge-pair.1 | ⊢ ganai brodi gi brodo |
| Ref | Expression |
|---|---|
| ge-pair | ⊢ ganai ge broda gi brodi gi ge brode gi brodo |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ge-pair.0 | . 2 ⊢ ganai broda gi brode | |
| 2 | ge-pair.1 | . 2 ⊢ ganai brodi gi brodo | |
| 3 | id 19 | . 2 ⊢ ganai ge brode gi brodo gi ge brode gi brodo | |
| 4 | 1, 2, 3 | syl2an 78 | 1 ⊢ ganai ge broda gi brodi gi ge brode gi brodo |
| Colors of variables: sumti selbri bridi |
| Syntax hints: ge bge 47 |
| This theorem was proved from axioms: ax-mp 10 ax-k 11 ax-s 15 ax-ge-le 48 ax-ge-re 49 ax-ge-in 50 |
| This theorem is referenced by: ge-pairl 80 ge-pairr 81 |
| Copyright terms: Public domain | W3C validator |