![]() |
brismu bridi |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > Home > Th. List > id |
Description: The principle of identity. This is distantly related to, but not the same as, the identity relation df-du 251. In terms of category theory, this proves that identity arrows exist. (Contributed by la korvo, 27-Jul-2023.) |
Ref | Expression |
---|---|
id | ⊢ ganai broda gi broda |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ax-k 11 | . 2 ⊢ ganai broda gi ganai brode gi broda | |
2 | ax-k 11 | . 2 ⊢ ganai broda gi ganai ganai brode gi broda gi broda | |
3 | 1, 2 | mpd 18 | 1 ⊢ ganai broda gi broda |
Colors of variables: sumti selbri bridi |
Syntax hints: ganai bgan 9 |
This theorem was proved from axioms: ax-mp 10 ax-k 11 ax-s 15 |
This theorem is referenced by: idd 20 ganai-swap12 29 mpc 31 ganai-abs 34 ganai-comp-rl 39 ganai-comp-lr 46 mpancom 71 mpdan 72 ge-pair 79 ge-pairl 80 ge-pairr 81 go-id 95 na.a-refl 114 ga-lin 165 ga-rin 166 ga-idem 171 ga-pairl 180 ga-pairr 181 na-gaiho 280 con2i 292 nakunaku 293 wit 423 foml19.41 432 nibli-refl 510 kihirnihi-refl 679 |
Copyright terms: Public domain | W3C validator |