Home brismu bridi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >   Home  >  Th. List  >  id

Theorem id 19
Description: The principle of identity. This is distantly related to, but not the same as, the identity relation df-du 251. In terms of category theory, this proves that identity arrows exist. (Contributed by la korvo, 27-Jul-2023.)
Assertion
Ref Expression
idganai broda gi broda

Proof of Theorem id
StepHypRef Expression
1 ax-k 11 . 2ganai broda gi ganai brode gi broda
2 ax-k 11 . 2ganai broda gi ganai ganai brode gi broda gi broda
31, 2mpd 18 1ganai broda gi broda
Colors of variables: sumti selbri bridi
Syntax hints:   ganai bgan 9
This theorem was proved from axioms:  ax-mp 10  ax-k 11  ax-s 15
This theorem is referenced by:  idd  20  ganai-swap12  29  mpc  31  ganai-abs  34  ganai-comp-rl  39  ganai-comp-lr  46  mpancom  71  mpdan  72  ge-pair  79  ge-pairl  80  ge-pairr  81  go-id  95  na.a-refl  114  ga-lin  165  ga-rin  166  ga-idem  171  ga-pairl  180  ga-pairr  181  na-gaiho  280  con2i  292  nakunaku  293  wit  423  foml19.41  432  nibli-refl  510  kihirnihi-refl  679
  Copyright terms: Public domain W3C validator