Home brismu bridi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >   Home  >  Th. List  >  ga-lin

Theorem ga-lin 142
Description: Introduce {ga} with the antecedent on the left. (Contributed by la korvo, 31-Jul-2023.)
Assertion
Ref Expression
ga-linganai broda gi ga broda gi brode

Proof of Theorem ga-lin
StepHypRef Expression
1 id 18 . . 3ganai ga broda gi brode gi ga broda gi brode
2 df-ga 138 . . 3go ganai ga broda gi brode gi ga broda gi brode gi ge ganai broda gi ga broda gi brode gi ganai brode gi ga broda gi brode
31, 2bi 79 . 2ge ganai broda gi ga broda gi brode gi ganai brode gi ga broda gi brode
43ge-lei 46 1ganai broda gi ga broda gi brode
Colors of variables: sumti selbri bridi
Syntax hints:  ganai bgan 9  ge bge 42  ga bga 137
This theorem was proved from axioms:  ax-mp 10  ax-k 11  ax-s 15  ax-ge-le 43
This theorem depends on definitions:  df-go 61  df-ga 138
This theorem is referenced by:  ga-idem  145  ga-com-lem  146  ga-li  148  ga-lid  150  ceri-lin  373  zilcmi-nomei  410
  Copyright terms: Public domain W3C validator