Home brismu bridi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >   Home  >  Th. List  >  ga-lin

Theorem ga-lin 165
Description: Introduce {ga} with the antecedent on the left. (Contributed by la korvo, 31-Jul-2023.)
Assertion
Ref Expression
ga-linganai broda gi ga broda gi brode

Proof of Theorem ga-lin
StepHypRef Expression
1 id 19 . . 3ganai ga broda gi brode gi ga broda gi brode
2 df-ga 161 . . 3go ganai ga broda gi brode gi ga broda gi brode gi ge ganai broda gi ga broda gi brode gi ganai brode gi ga broda gi brode
31, 2bi 101 . 2ge ganai broda gi ga broda gi brode gi ganai brode gi ga broda gi brode
43ge-lei 51 1ganai broda gi ga broda gi brode
Colors of variables: sumti selbri bridi
Syntax hints:   ganai bgan 9   ge bge 47   ga bga 160
This theorem was proved from axioms:  ax-mp 10  ax-k 11  ax-s 15  ax-ge-le 48
This theorem depends on definitions:  df-go 83  df-ga 161
This theorem is referenced by:  ga-idem  171  ga-com-lem  172  ge-dist-ga  174  ga-li  175  ga-lid  177  ga-dist-ge  182  ceri-lin  410  zilcmi-nomei  461
  Copyright terms: Public domain W3C validator