Home brismu bridi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >   Home  >  Th. List  >  ga-lin

Theorem ga-lin 132
Description: Introduce {ga} with the antecedent on the left. Theorem orc in [ILE] p. 0. (Contributed by la korvo, 31-Jul-2023.)
Assertion
Ref Expression
ga-linganai broda gi ga broda gi brode

Proof of Theorem ga-lin
StepHypRef Expression
1 id 17 . . 3ganai ga broda gi brode gi ga broda gi brode
2 df-ga 128 . . 3go ganai ga broda gi brode gi ga broda gi brode gi ge ganai broda gi ga broda gi brode gi ganai brode gi ga broda gi brode
31, 2bi 69 . 2ge ganai broda gi ga broda gi brode gi ganai brode gi ga broda gi brode
43ge-lei 37 1ganai broda gi ga broda gi brode
Colors of variables: sumti selbri bridi
Syntax hints:  ganai bgan 9  ge bge 33  ga bga 127
This theorem was proved from axioms:  ax-mp 10  ax-k 11  ax-s 14  ax-ge-le 34
This theorem depends on definitions:  df-go 52  df-ga 128
This theorem is referenced by:  ga-idem  135  ga-com-lem  136  ceri-lin  336  zilcmi-nomei  368
  Copyright terms: Public domain W3C validator