Home brismu bridi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >   Home  >  Th. List  >  ga-rin

Theorem ga-rin 166
Description: Introduce {ga} with the antecedent on the right. (Contributed by la korvo, 31-Jul-2023.)
Assertion
Ref Expression
ga-ringanai broda gi ga brode gi broda

Proof of Theorem ga-rin
StepHypRef Expression
1 id 19 . . 3ganai ga brode gi broda gi ga brode gi broda
2 df-ga 161 . . 3go ganai ga brode gi broda gi ga brode gi broda gi ge ganai brode gi ga brode gi broda gi ganai broda gi ga brode gi broda
31, 2bi 101 . 2ge ganai brode gi ga brode gi broda gi ganai broda gi ga brode gi broda
43ge-rei 53 1ganai broda gi ga brode gi broda
Colors of variables: sumti selbri bridi
Syntax hints:   ganai bgan 9   ge bge 47   ga bga 160
This theorem was proved from axioms:  ax-mp 10  ax-k 11  ax-s 15  ax-ge-le 48  ax-ge-re 49
This theorem depends on definitions:  df-go 83  df-ga 161
This theorem is referenced by:  ga-com-lem  172  ge-dist-ga  174  ga-ri  176  ga-rid  178  ga-dist-ge  182  ceri-rin  411  cmima-zilcmi  462
  Copyright terms: Public domain W3C validator