brismu bridi |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > Home > Th. List > ga-rin |
Description: Introduce {ga} with the antecedent on the right. Theorem olc in [ILE] p. 0. (Contributed by la korvo, 31-Jul-2023.) |
Ref | Expression |
---|---|
ga-rin | ⊢ ganai broda gi ga brode gi broda |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | id 17 | . . 3 ⊢ ganai ga brode gi broda gi ga brode gi broda | |
2 | df-ga 128 | . . 3 ⊢ go ganai ga brode gi broda gi ga brode gi broda gi ge ganai brode gi ga brode gi broda gi ganai broda gi ga brode gi broda | |
3 | 1, 2 | bi 69 | . 2 ⊢ ge ganai brode gi ga brode gi broda gi ganai broda gi ga brode gi broda |
4 | 3 | ge-rei 39 | 1 ⊢ ganai broda gi ga brode gi broda |
Colors of variables: sumti selbri bridi |
Syntax hints: ganai bgan 9 ge bge 33 ga bga 127 |
This theorem was proved from axioms: ax-mp 10 ax-k 11 ax-s 14 ax-ge-le 34 ax-ge-re 35 |
This theorem depends on definitions: df-go 52 df-ga 128 |
This theorem is referenced by: ga-com-lem 136 ceri-rin 337 cmima-zilcmi 369 |
Copyright terms: Public domain | W3C validator |