Home brismu bridi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >   Home  >  Th. List  >  ga-rin

Theorem ga-rin 143
Description: Introduce {ga} with the antecedent on the right. (Contributed by la korvo, 31-Jul-2023.)
Assertion
Ref Expression
ga-ringanai broda gi ga brode gi broda

Proof of Theorem ga-rin
StepHypRef Expression
1 id 18 . . 3ganai ga brode gi broda gi ga brode gi broda
2 df-ga 138 . . 3go ganai ga brode gi broda gi ga brode gi broda gi ge ganai brode gi ga brode gi broda gi ganai broda gi ga brode gi broda
31, 2bi 79 . 2ge ganai brode gi ga brode gi broda gi ganai broda gi ga brode gi broda
43ge-rei 48 1ganai broda gi ga brode gi broda
Colors of variables: sumti selbri bridi
Syntax hints:  ganai bgan 9  ge bge 42  ga bga 137
This theorem was proved from axioms:  ax-mp 10  ax-k 11  ax-s 15  ax-ge-le 43  ax-ge-re 44
This theorem depends on definitions:  df-go 61  df-ga 138
This theorem is referenced by:  ga-com-lem  146  ga-ri  149  ga-rid  151  ceri-rin  374  cmima-zilcmi  411
  Copyright terms: Public domain W3C validator