Home brismu bridi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >   Home  >  Th. List  >  ga-rin

Theorem ga-rin 133
Description: Introduce {ga} with the antecedent on the right. Theorem olc in [ILE] p. 0. (Contributed by la korvo, 31-Jul-2023.)
Assertion
Ref Expression
ga-ringanai broda gi ga brode gi broda

Proof of Theorem ga-rin
StepHypRef Expression
1 id 17 . . 3ganai ga brode gi broda gi ga brode gi broda
2 df-ga 128 . . 3go ganai ga brode gi broda gi ga brode gi broda gi ge ganai brode gi ga brode gi broda gi ganai broda gi ga brode gi broda
31, 2bi 69 . 2ge ganai brode gi ga brode gi broda gi ganai broda gi ga brode gi broda
43ge-rei 39 1ganai broda gi ga brode gi broda
Colors of variables: sumti selbri bridi
Syntax hints:  ganai bgan 9  ge bge 33  ga bga 127
This theorem was proved from axioms:  ax-mp 10  ax-k 11  ax-s 14  ax-ge-le 34  ax-ge-re 35
This theorem depends on definitions:  df-go 52  df-ga 128
This theorem is referenced by:  ga-com-lem  136  ceri-rin  337  cmima-zilcmi  369
  Copyright terms: Public domain W3C validator