![]() |
brismu bridi |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > Home > Th. List > ga-sum |
Description: All binary coproducts exist. (Contributed by la korvo, 31-Jul-2023.) |
Ref | Expression |
---|---|
ga-sum.0 | ⊢ ganai broda gi brode |
ga-sum.1 | ⊢ ganai brodi gi brode |
Ref | Expression |
---|---|
ga-sum | ⊢ ganai ga broda gi brodi gi brode |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ga-sum.0 | . 2 ⊢ ganai broda gi brode | |
2 | ga-sum.1 | . 2 ⊢ ganai brodi gi brode | |
3 | gar 163 | . 2 ⊢ ganai ge ganai broda gi brode gi ganai brodi gi brode gi ganai ga broda gi brodi gi brode | |
4 | 1, 2, 3 | mp2an 75 | 1 ⊢ ganai ga broda gi brodi gi brode |
Colors of variables: sumti selbri bridi |
Syntax hints: ganai bgan 9 ga bga 160 |
This theorem was proved from axioms: ax-mp 10 ax-k 11 ax-s 15 ax-ge-le 48 ax-ge-re 49 ax-ge-in 50 |
This theorem depends on definitions: df-go 83 df-ga 161 |
This theorem is referenced by: garid 168 garian 170 ga-idem 171 ga-com-lem 172 ge-dist-ga 174 ga-pair 179 |
Copyright terms: Public domain | W3C validator |