Home brismu bridi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >   Home  >  Th. List  >  ga-sum

Theorem ga-sum 167
Description: All binary coproducts exist. (Contributed by la korvo, 31-Jul-2023.)
Hypotheses
Ref Expression
ga-sum.0ganai broda gi brode
ga-sum.1ganai brodi gi brode
Assertion
Ref Expression
ga-sumganai ga broda gi brodi gi brode

Proof of Theorem ga-sum
StepHypRef Expression
1 ga-sum.0 . 2ganai broda gi brode
2 ga-sum.1 . 2ganai brodi gi brode
3 gar 163 . 2ganai ge ganai broda gi brode gi ganai brodi gi brode gi ganai ga broda gi brodi gi brode
41, 2, 3mp2an 75 1ganai ga broda gi brodi gi brode
Colors of variables: sumti selbri bridi
Syntax hints:   ganai bgan 9   ga bga 160
This theorem was proved from axioms:  ax-mp 10  ax-k 11  ax-s 15  ax-ge-le 48  ax-ge-re 49  ax-ge-in 50
This theorem depends on definitions:  df-go 83  df-ga 161
This theorem is referenced by:  garid  168  garian  170  ga-idem  171  ga-com-lem  172  ge-dist-ga  174  ga-pair  179
  Copyright terms: Public domain W3C validator