Home brismu bridi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >   Home  >  Th. List  >  gar

Theorem gar 163
Description: Reverse implication of df-ga 161 (Contributed by la korvo, 31-Jul-2023.)
Assertion
Ref Expression
garganai ge ganai brode gi broda gi ganai brodi gi broda gi ganai ga brode gi brodi gi broda

Proof of Theorem gar
StepHypRef Expression
1 df-ga 161 . 2go ganai ga brode gi brodi gi broda gi ge ganai brode gi broda gi ganai brodi gi broda
21bi-rev-syl 103 1ganai ge ganai brode gi broda gi ganai brodi gi broda gi ganai ga brode gi brodi gi broda
Colors of variables: sumti selbri bridi
Syntax hints:   ganai bgan 9   ge bge 47   ga bga 160
This theorem was proved from axioms:  ax-mp 10  ax-k 11  ax-s 15  ax-ge-le 48  ax-ge-re 49  ax-ge-in 50
This theorem depends on definitions:  df-go 83  df-ga 161
This theorem is referenced by:  ga-sum  167
  Copyright terms: Public domain W3C validator