![]() |
brismu bridi |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > Home > Th. List > gar |
Description: Reverse implication of df-ga 161 (Contributed by la korvo, 31-Jul-2023.) |
Ref | Expression |
---|---|
gar | ⊢ ganai ge ganai brode gi broda gi ganai brodi gi broda gi ganai ga brode gi brodi gi broda |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-ga 161 | . 2 ⊢ go ganai ga brode gi brodi gi broda gi ge ganai brode gi broda gi ganai brodi gi broda | |
2 | 1 | bi-rev-syl 103 | 1 ⊢ ganai ge ganai brode gi broda gi ganai brodi gi broda gi ganai ga brode gi brodi gi broda |
Colors of variables: sumti selbri bridi |
Syntax hints: ganai bgan 9 ge bge 47 ga bga 160 |
This theorem was proved from axioms: ax-mp 10 ax-k 11 ax-s 15 ax-ge-le 48 ax-ge-re 49 ax-ge-in 50 |
This theorem depends on definitions: df-go 83 df-ga 161 |
This theorem is referenced by: ga-sum 167 |
Copyright terms: Public domain | W3C validator |