Home brismu bridi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >   Home  >  Th. List  >  gai

Theorem gai 162
Description: Inference form of df-ga 161 (Contributed by la korvo, 28-Jul-2023.)
Hypothesis
Ref Expression
gai.0ganai ga brode gi brodi gi broda
Assertion
Ref Expression
gaige ganai brode gi broda gi ganai brodi gi broda

Proof of Theorem gai
StepHypRef Expression
1 gai.0 . 2ganai ga brode gi brodi gi broda
2 df-ga 161 . 2go ganai ga brode gi brodi gi broda gi ge ganai brode gi broda gi ganai brodi gi broda
31, 2bi 101 1ge ganai brode gi broda gi ganai brodi gi broda
Colors of variables: sumti selbri bridi
Syntax hints:   ganai bgan 9   ge bge 47   ga bga 160
This theorem was proved from axioms:  ax-mp 10  ax-ge-le 48
This theorem depends on definitions:  df-go 83  df-ga 161
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator