| brismu bridi |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > Home > Th. List > gari | |||
| Description: Reverse inference form of df-ga 161 (Contributed by la korvo, 28-Jul-2023.) |
| Ref | Expression |
|---|---|
| gari.0 | ⊢ ge ganai brode gi broda gi ganai brodi gi broda |
| Ref | Expression |
|---|---|
| gari | ⊢ ganai ga brode gi brodi gi broda |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | gari.0 | . 2 ⊢ ge ganai brode gi broda gi ganai brodi gi broda | |
| 2 | df-ga 161 | . 2 ⊢ go ganai ga brode gi brodi gi broda gi ge ganai brode gi broda gi ganai brodi gi broda | |
| 3 | 1, 2 | bi-rev 102 | 1 ⊢ ganai ga brode gi brodi gi broda |
| Colors of variables: sumti selbri bridi |
| Syntax hints: ganai bgan 9 ge bge 47 ga bga 160 |
| This theorem was proved from axioms: ax-mp 10 ax-k 11 ax-s 15 ax-ge-le 48 ax-ge-re 49 ax-ge-in 50 |
| This theorem depends on definitions: df-go 83 df-ga 161 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |