![]() |
brismu bridi |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > Home > Th. List > garid |
Description: Nested deduction form of gar 163 (Contributed by la korvo, 14-Jul-2025.) |
Ref | Expression |
---|---|
garid.0 | ⊢ ganai broda gi ganai brode gi brodi |
garid.1 | ⊢ ganai broda gi ganai brodo gi brodi |
Ref | Expression |
---|---|
garid | ⊢ ganai broda gi ganai ga brode gi brodo gi brodi |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | garid.0 | . . . 4 ⊢ ganai broda gi ganai brode gi brodi | |
2 | 1 | ganai-swap12 29 | . . 3 ⊢ ganai brode gi ganai broda gi brodi |
3 | garid.1 | . . . 4 ⊢ ganai broda gi ganai brodo gi brodi | |
4 | 3 | ganai-swap12 29 | . . 3 ⊢ ganai brodo gi ganai broda gi brodi |
5 | 2, 4 | ga-sum 167 | . 2 ⊢ ganai ga brode gi brodo gi ganai broda gi brodi |
6 | 5 | ganai-swap12 29 | 1 ⊢ ganai broda gi ganai ga brode gi brodo gi brodi |
Colors of variables: sumti selbri bridi |
Syntax hints: ganai bgan 9 ga bga 160 |
This theorem was proved from axioms: ax-mp 10 ax-k 11 ax-s 15 ax-ge-le 48 ax-ge-re 49 ax-ge-in 50 |
This theorem depends on definitions: df-go 83 df-ga 161 |
This theorem is referenced by: garidan 169 |
Copyright terms: Public domain | W3C validator |