Home brismu bridi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >   Home  >  Th. List  >  ganai-swap12

Theorem ganai-swap12 26
Description: Naturally swap the first and second antecedents in an internalized inference. Theorem com12 in [ILE] p. 0. (Contributed by la korvo, 30-Jul-2023.)
Hypothesis
Ref Expression
ganai-swap12.0ganai broda gi ganai brode gi brodi
Assertion
Ref Expression
ganai-swap12ganai brode gi ganai broda gi brodi

Proof of Theorem ganai-swap12
StepHypRef Expression
1 id 17 . 2ganai brode gi brode
2 ganai-swap12.0 . 2ganai broda gi ganai brode gi brodi
31, 2syl5com 25 1ganai brode gi ganai broda gi brodi
Colors of variables: sumti selbri bridi
This theorem was proved from axioms:  ax-mp 10  ax-k 11  ax-s 14
This theorem is referenced by:  syl5  27  ge-in-swap12  43  subeq-lem2  354
  Copyright terms: Public domain W3C validator