Home brismu bridi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >   Home  >  Th. List  >  syl5com

Theorem syl5com 27
Description: A syllogism which shuffles antecedents. (Contributed by la korvo, 30-Jul-2023.)
Hypotheses
Ref Expression
syl5com.0ganai broda gi brode
syl5com.1ganai brodi gi ganai brode gi brodo
Assertion
Ref Expression
syl5comganai broda gi ganai brodi gi brodo

Proof of Theorem syl5com
StepHypRef Expression
1 syl5com.0 . . 3ganai broda gi brode
21kd 26 . 2ganai broda gi ganai brodi gi brode
3 syl5com.1 . 2ganai brodi gi ganai brode gi brodo
42, 3sylcom 23 1ganai broda gi ganai brodi gi brodo
Colors of variables: sumti selbri bridi
This theorem was proved from axioms:  ax-mp 10  ax-k 11  ax-s 15
This theorem is referenced by:  ganai-swap12  28  syl5  30
  Copyright terms: Public domain W3C validator