Home brismu bridi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >   Home  >  Th. List  >  syl5

Theorem syl5 27
Description: A syllogism which shuffles antecedents. (Contributed by la korvo, 31-Jul-2023.)
Hypotheses
Ref Expression
syl5.0ganai broda gi brode
syl5.1ganai brodi gi ganai brode gi brodo
Assertion
Ref Expression
syl5ganai brodi gi ganai broda gi brodo

Proof of Theorem syl5
StepHypRef Expression
1 syl5.0 . . 3ganai broda gi brode
2 syl5.1 . . 3ganai brodi gi ganai brode gi brodo
31, 2syl5com 25 . 2ganai broda gi ganai brodi gi brodo
43ganai-swap12 26 1ganai brodi gi ganai broda gi brodo
Colors of variables: sumti selbri bridi
This theorem was proved from axioms:  ax-mp 10  ax-k 11  ax-s 14
This theorem is referenced by:  syl2im  28  syl5bi  76
  Copyright terms: Public domain W3C validator