| brismu bridi |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > Home > Th. List > syl5bi | |||
| Description: Replace a nested antecedent using a biconditional. (Contributed by la korvo, 22-Jun-2024.) |
| Ref | Expression |
|---|---|
| syl5bi.0 | ⊢ go broda gi brode |
| syl5bi.1 | ⊢ ganai brodi gi ganai brode gi brodo |
| Ref | Expression |
|---|---|
| syl5bi | ⊢ ganai brodi gi ganai broda gi brodo |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | syl5bi.0 | . . 3 ⊢ go broda gi brode | |
| 2 | 1 | go-ganai 85 | . 2 ⊢ ganai broda gi brode |
| 3 | syl5bi.1 | . 2 ⊢ ganai brodi gi ganai brode gi brodo | |
| 4 | 2, 3 | syl5 32 | 1 ⊢ ganai brodi gi ganai broda gi brodo |
| Colors of variables: sumti selbri bridi |
| This theorem was proved from axioms: ax-mp 10 ax-k 11 ax-s 15 ax-ge-le 48 |
| This theorem depends on definitions: df-go 83 |
| This theorem is referenced by: subeq-lem2 451 |
| Copyright terms: Public domain | W3C validator |