brismu bridi |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > Home > Th. List > syl5bi |
Description: Replace a nested antecedent using a biconditional. (Contributed by la korvo, 22-Jun-2024.) |
Ref | Expression |
---|---|
syl5bi.0 | ⊢ go broda gi brode |
syl5bi.1 | ⊢ ganai brodi gi ganai brode gi brodo |
Ref | Expression |
---|---|
syl5bi | ⊢ ganai brodi gi ganai broda gi brodo |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | syl5bi.0 | . . 3 ⊢ go broda gi brode | |
2 | 1 | go-ganai 63 | . 2 ⊢ ganai broda gi brode |
3 | syl5bi.1 | . 2 ⊢ ganai brodi gi ganai brode gi brodo | |
4 | 2, 3 | syl5 30 | 1 ⊢ ganai brodi gi ganai broda gi brodo |
Colors of variables: sumti selbri bridi |
This theorem was proved from axioms: ax-mp 10 ax-k 11 ax-s 15 ax-ge-le 43 |
This theorem depends on definitions: df-go 61 |
This theorem is referenced by: subeq-lem2 393 |
Copyright terms: Public domain | W3C validator |