Home brismu bridi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >   Home  >  Th. List  >  syl5bi

Theorem syl5bi 76
Description: Replace a nested antecedent using a biconditional. (Contributed by la korvo, 22-Jun-2024.)
Hypotheses
Ref Expression
syl5bi.0go broda gi brode
syl5bi.1ganai brodi gi ganai brode gi brodo
Assertion
Ref Expression
syl5biganai brodi gi ganai broda gi brodo

Proof of Theorem syl5bi
StepHypRef Expression
1 syl5bi.0 . . 3go broda gi brode
21go-ganai 54 . 2ganai broda gi brode
3 syl5bi.1 . 2ganai brodi gi ganai brode gi brodo
42, 3syl5 27 1ganai brodi gi ganai broda gi brodo
Colors of variables: sumti selbri bridi
This theorem was proved from axioms:  ax-mp 10  ax-k 11  ax-s 14  ax-ge-le 34
This theorem depends on definitions:  df-go 52
This theorem is referenced by:  subeq-lem2  354
  Copyright terms: Public domain W3C validator