brismu bridi |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > Home > Th. List > go-ganai |
Description: Biconditional implication may be weakened to unidirectional implication. Category-theoretically, this theorem embeds the core of Loj. Inference form of left side of goli 53. Theorem biimpi in [ILE] p. 0. (Contributed by la korvo, 17-Jul-2023.) (Shortened by la korvo, 29-Jul-2023.) |
Ref | Expression |
---|---|
go-ganai.0 | ⊢ go broda gi brode |
Ref | Expression |
---|---|
go-ganai | ⊢ ganai broda gi brode |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | go-ganai.0 | . . 3 ⊢ go broda gi brode | |
2 | 1 | goli 53 | . 2 ⊢ ge ganai broda gi brode gi ganai brode gi broda |
3 | 2 | ge-lei 37 | 1 ⊢ ganai broda gi brode |
Colors of variables: sumti selbri bridi |
Syntax hints: ganai bgan 9 |
This theorem was proved from axioms: ax-mp 10 ax-ge-le 34 |
This theorem depends on definitions: df-go 52 |
This theorem is referenced by: bi 69 bi-rev-syl 71 sylbi 72 sylib 73 syl5bi 76 se-dual 172 se-dual-l 173 se-ganaii 175 se-ganair 176 ro2-bi 194 ro2-bi-rev 195 naku-uncur 212 te-dual 327 te-dual-l 328 te-ganaii 330 te-ganair 331 sub1 352 mapti-ckini 581 |
Copyright terms: Public domain | W3C validator |