| brismu bridi |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > Home > Th. List > go-ganai | |||
| Description: Biconditional implication may be weakened to unidirectional implication. Category-theoretically, this theorem embeds the core of Loj. Inference form of left side of goli 84. (Contributed by la korvo, 17-Jul-2023.) (Shortened by la korvo, 29-Jul-2023.) |
| Ref | Expression |
|---|---|
| go-ganai.0 | ⊢ go broda gi brode |
| Ref | Expression |
|---|---|
| go-ganai | ⊢ ganai broda gi brode |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | go-ganai.0 | . . 3 ⊢ go broda gi brode | |
| 2 | 1 | goli 84 | . 2 ⊢ ge ganai broda gi brode gi ganai brode gi broda |
| 3 | 2 | ge-lei 51 | 1 ⊢ ganai broda gi brode |
| Colors of variables: sumti selbri bridi |
| Syntax hints: ganai bgan 9 |
| This theorem was proved from axioms: ax-mp 10 ax-ge-le 48 |
| This theorem depends on definitions: df-go 83 |
| This theorem is referenced by: bi 101 bi-rev-syl 103 sylbi 104 sylib 105 syl5bi 108 se-dual 217 se-dual-l 218 se-ganaii 220 se-ganair 221 ro2-bi 245 ro2-bi-rev 246 naku-uncur 274 te-dual 401 te-dual-l 402 te-ganaii 404 te-ganair 405 sub1 449 mapti-ckini 709 |
| Copyright terms: Public domain | W3C validator |