brismu bridi |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > Home > Th. List > go-ganai |
Description: Biconditional implication may be weakened to unidirectional implication. Category-theoretically, this theorem embeds the core of Loj. Inference form of left side of goli 62. (Contributed by la korvo, 17-Jul-2023.) (Shortened by la korvo, 29-Jul-2023.) |
Ref | Expression |
---|---|
go-ganai.0 | ⊢ go broda gi brode |
Ref | Expression |
---|---|
go-ganai | ⊢ ganai broda gi brode |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | go-ganai.0 | . . 3 ⊢ go broda gi brode | |
2 | 1 | goli 62 | . 2 ⊢ ge ganai broda gi brode gi ganai brode gi broda |
3 | 2 | ge-lei 46 | 1 ⊢ ganai broda gi brode |
Colors of variables: sumti selbri bridi |
Syntax hints: ganai bgan 9 |
This theorem was proved from axioms: ax-mp 10 ax-ge-le 43 |
This theorem depends on definitions: df-go 61 |
This theorem is referenced by: bi 79 bi-rev-syl 81 sylbi 82 sylib 83 syl5bi 86 se-dual 186 se-dual-l 187 se-ganaii 189 se-ganair 190 ro2-bi 210 ro2-bi-rev 211 naku-uncur 238 te-dual 364 te-dual-l 365 te-ganaii 367 te-ganair 368 sub1 391 mapti-ckini 634 |
Copyright terms: Public domain | W3C validator |