Home brismu bridi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >   Home  >  Th. List  >  go-ganai

Theorem go-ganai 63
Description: Biconditional implication may be weakened to unidirectional implication. Category-theoretically, this theorem embeds the core of Loj. Inference form of left side of goli 62. (Contributed by la korvo, 17-Jul-2023.) (Shortened by la korvo, 29-Jul-2023.)
Hypothesis
Ref Expression
go-ganai.0go broda gi brode
Assertion
Ref Expression
go-ganaiganai broda gi brode

Proof of Theorem go-ganai
StepHypRef Expression
1 go-ganai.0 . . 3go broda gi brode
21goli 62 . 2ge ganai broda gi brode gi ganai brode gi broda
32ge-lei 46 1ganai broda gi brode
Colors of variables: sumti selbri bridi
Syntax hints:  ganai bgan 9
This theorem was proved from axioms:  ax-mp 10  ax-ge-le 43
This theorem depends on definitions:  df-go 61
This theorem is referenced by:  bi  79  bi-rev-syl  81  sylbi  82  sylib  83  syl5bi  86  se-dual  186  se-dual-l  187  se-ganaii  189  se-ganair  190  ro2-bi  210  ro2-bi-rev  211  naku-uncur  238  te-dual  364  te-dual-l  365  te-ganaii  367  te-ganair  368  sub1  391  mapti-ckini  634
  Copyright terms: Public domain W3C validator