| brismu bridi |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > Home > Th. List > sylbi | |||
| Description: Syllogism with a biconditional. (Contributed by la korvo, 25-Jun-2024.) |
| Ref | Expression |
|---|---|
| sylbi.0 | ⊢ go broda gi brode |
| sylbi.1 | ⊢ ganai brode gi brodi |
| Ref | Expression |
|---|---|
| sylbi | ⊢ ganai broda gi brodi |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sylbi.0 | . . 3 ⊢ go broda gi brode | |
| 2 | 1 | go-ganai 85 | . 2 ⊢ ganai broda gi brode |
| 3 | sylbi.1 | . 2 ⊢ ganai brode gi brodi | |
| 4 | 2, 3 | syl 21 | 1 ⊢ ganai broda gi brodi |
| Colors of variables: sumti selbri bridi |
| This theorem was proved from axioms: ax-mp 10 ax-k 11 ax-s 15 ax-ge-le 48 |
| This theorem depends on definitions: df-go 83 |
| This theorem is referenced by: nfr 438 |
| Copyright terms: Public domain | W3C validator |