Home brismu bridi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >   Home  >  Th. List  >  nfr

Theorem nfr 399
Description: Property of not-free quantification. (Contributed by la korvo, 25-Jun-2024.)
Assertion
Ref Expression
nfrganai na'a'u da zo'u broda gi ganai broda gi ro da zo'u broda

Proof of Theorem nfr
StepHypRef Expression
1 df-nahahu 396 . 2go na'a'u da zo'u broda gi ro da zo'u ganai broda gi ro da zo'u broda
2 ax-spec1 196 . 2ganai ro da zo'u ganai broda gi ro da zo'u broda gi ganai broda gi ro da zo'u broda
31, 2sylbi 82 1ganai na'a'u da zo'u broda gi ganai broda gi ro da zo'u broda
Colors of variables: sumti selbri bridi
Syntax hints:  ganai bgan 9  ro brd 191  na'a'u bnd 395
This theorem was proved from axioms:  ax-mp 10  ax-k 11  ax-s 15  ax-ge-le 43  ax-spec1 196
This theorem depends on definitions:  df-go 61  df-nahahu 396
This theorem is referenced by:  nfri  400
  Copyright terms: Public domain W3C validator