![]() |
brismu bridi |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > Home > Th. List > nfi |
Description: Inference form of df-nahahu 435 (Contributed by la korvo, 25-Jun-2024.) |
Ref | Expression |
---|---|
nfi.0 | ⊢ ganai broda gi ro da zo'u broda |
Ref | Expression |
---|---|
nfi | ⊢ na'a'u da zo'u broda |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-nahahu 435 | . 2 ⊢ go na'a'u da zo'u broda gi ro da zo'u ganai broda gi ro da zo'u broda | |
2 | nfi.0 | . 2 ⊢ ganai broda gi ro da zo'u broda | |
3 | 1, 2 | bi-revg 436 | 1 ⊢ na'a'u da zo'u broda |
Colors of variables: sumti selbri bridi |
Syntax hints: ganai bgan 9 ro brd 222 na'a'u bnd 434 |
This theorem was proved from axioms: ax-mp 10 ax-k 11 ax-s 15 ax-ge-le 48 ax-ge-re 49 ax-ge-in 50 ax-gen1 224 |
This theorem depends on definitions: df-go 83 df-nahahu 435 |
This theorem is referenced by: nfth 441 nfnth 442 nfv 445 |
Copyright terms: Public domain | W3C validator |