Home brismu bridi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >   Home  >  Th. List  >  nfi

Theorem nfi 398
Description: Inference form of df-nahahu 396 (Contributed by la korvo, 25-Jun-2024.)
Hypothesis
Ref Expression
nfi.0ganai broda gi ro da zo'u broda
Assertion
Ref Expression
nfina'a'u da zo'u broda

Proof of Theorem nfi
StepHypRef Expression
1 df-nahahu 396 . 2go na'a'u da zo'u broda gi ro da zo'u ganai broda gi ro da zo'u broda
2 nfi.0 . 2ganai broda gi ro da zo'u broda
31, 2bi-revg 397 1na'a'u da zo'u broda
Colors of variables: sumti selbri bridi
Syntax hints:  ganai bgan 9  ro brd 191  na'a'u bnd 395
This theorem was proved from axioms:  ax-mp 10  ax-k 11  ax-s 15  ax-ge-le 43  ax-ge-re 44  ax-ge-in 45  ax-gen1 193
This theorem depends on definitions:  df-go 61  df-nahahu 396
This theorem is referenced by:  nfth  402  nfnth  403  nfv  406
  Copyright terms: Public domain W3C validator