Home brismu bridi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >   Home  >  Th. List  >  bi-revg

Theorem bi-revg 397
Description: bi-rev 80 with generalization on the RHS. (Contributed by la korvo, 25-Jun-2024.)
Hypotheses
Ref Expression
bi-revg.0go broda gi ro da zo'u brode
bi-revg.1brode
Assertion
Ref Expression
bi-revgbroda

Proof of Theorem bi-revg
StepHypRef Expression
1 bi-revg.1 . . 3brode
21ax-gen1 193 . 2ro da zo'u brode
3 bi-revg.0 . 2go broda gi ro da zo'u brode
42, 3bi-rev 80 1broda
Colors of variables: sumti selbri bridi
Syntax hints:  ro brd 191
This theorem was proved from axioms:  ax-mp 10  ax-k 11  ax-s 15  ax-ge-le 43  ax-ge-re 44  ax-ge-in 45  ax-gen1 193
This theorem depends on definitions:  df-go 61
This theorem is referenced by:  nfi  398
  Copyright terms: Public domain W3C validator