Home brismu bridi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >   Home  >  Th. List  >  bi-revg

Theorem bi-revg 358
Description: bi-rev 70 with generalization on the RHS. Theorem mpgbir in [ILE] p. 0. (Contributed by la korvo, 25-Jun-2024.)
Hypotheses
Ref Expression
bi-revg.0go broda gi ro da zo'u brode
bi-revg.1brode
Assertion
Ref Expression
bi-revgbroda

Proof of Theorem bi-revg
StepHypRef Expression
1 bi-revg.1 . . 3brode
21ax-gen1 179 . 2ro da zo'u brode
3 bi-revg.0 . 2go broda gi ro da zo'u brode
42, 3bi-rev 70 1broda
Colors of variables: sumti selbri bridi
Syntax hints:  ro brd 177
This theorem was proved from axioms:  ax-mp 10  ax-k 11  ax-s 14  ax-ge-le 34  ax-ge-re 35  ax-ge-in 36  ax-gen1 179
This theorem depends on definitions:  df-go 52
This theorem is referenced by:  nfi  359
  Copyright terms: Public domain W3C validator