| brismu bridi |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > Home > Th. List > bi-revg | |||
| Description: bi-rev 102 with generalization on the RHS. (Contributed by la korvo, 25-Jun-2024.) |
| Ref | Expression |
|---|---|
| bi-revg.0 | ⊢ go broda gi ro da zo'u brode |
| bi-revg.1 | ⊢ brode |
| Ref | Expression |
|---|---|
| bi-revg | ⊢ broda |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | bi-revg.1 | . . 3 ⊢ brode | |
| 2 | 1 | ax-gen1 224 | . 2 ⊢ ro da zo'u brode |
| 3 | bi-revg.0 | . 2 ⊢ go broda gi ro da zo'u brode | |
| 4 | 2, 3 | bi-rev 102 | 1 ⊢ broda |
| Colors of variables: sumti selbri bridi |
| Syntax hints: ro brd 222 |
| This theorem was proved from axioms: ax-mp 10 ax-k 11 ax-s 15 ax-ge-le 48 ax-ge-re 49 ax-ge-in 50 ax-gen1 224 |
| This theorem depends on definitions: df-go 83 |
| This theorem is referenced by: nfi 437 |
| Copyright terms: Public domain | W3C validator |