brismu bridi |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > Home > Th. List > bi-revg |
Description: bi-rev 70 with generalization on the RHS. Theorem mpgbir in [ILE] p. 0. (Contributed by la korvo, 25-Jun-2024.) |
Ref | Expression |
---|---|
bi-revg.0 | ⊢ go broda gi ro da zo'u brode |
bi-revg.1 | ⊢ brode |
Ref | Expression |
---|---|
bi-revg | ⊢ broda |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bi-revg.1 | . . 3 ⊢ brode | |
2 | 1 | ax-gen1 179 | . 2 ⊢ ro da zo'u brode |
3 | bi-revg.0 | . 2 ⊢ go broda gi ro da zo'u brode | |
4 | 2, 3 | bi-rev 70 | 1 ⊢ broda |
Colors of variables: sumti selbri bridi |
Syntax hints: ro brd 177 |
This theorem was proved from axioms: ax-mp 10 ax-k 11 ax-s 14 ax-ge-le 34 ax-ge-re 35 ax-ge-in 36 ax-gen1 179 |
This theorem depends on definitions: df-go 52 |
This theorem is referenced by: nfi 359 |
Copyright terms: Public domain | W3C validator |