![]() |
brismu bridi |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > Home > Th. List > sylanbrc |
Description: Deductive unpacking of a definition with conjoined components. (Contributed by la korvo, 22-Jun-2024.) |
Ref | Expression |
---|---|
sylanbrc.0 | ⊢ ganai broda gi brode |
sylanbrc.1 | ⊢ ganai broda gi brodi |
sylanbrc.2 | ⊢ go brodo gi ge brode gi brodi |
Ref | Expression |
---|---|
sylanbrc | ⊢ ganai broda gi brodo |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sylanbrc.0 | . . 3 ⊢ ganai broda gi brode | |
2 | sylanbrc.1 | . . 3 ⊢ ganai broda gi brodi | |
3 | 1, 2 | ge-prod 69 | . 2 ⊢ ganai broda gi ge brode gi brodi |
4 | sylanbrc.2 | . 2 ⊢ go brodo gi ge brode gi brodi | |
5 | 3, 4 | sylibr 106 | 1 ⊢ ganai broda gi brodo |
Colors of variables: sumti selbri bridi |
Syntax hints: ge bge 47 |
This theorem was proved from axioms: ax-mp 10 ax-k 11 ax-s 15 ax-ge-le 48 ax-ge-re 49 ax-ge-in 50 |
This theorem depends on definitions: df-go 83 |
This theorem is referenced by: subeq-lem1 450 sub2 454 |
Copyright terms: Public domain | W3C validator |