brismu bridi |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > Home > Th. List > sylibr |
Description: Apply a definition to a consequent. (Contributed by la korvo, 22-Jun-2024.) |
Ref | Expression |
---|---|
sylibr.0 | ⊢ ganai broda gi brode |
sylibr.1 | ⊢ go brodi gi brode |
Ref | Expression |
---|---|
sylibr | ⊢ ganai broda gi brodi |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sylibr.0 | . 2 ⊢ ganai broda gi brode | |
2 | sylibr.1 | . . 3 ⊢ go brodi gi brode | |
3 | 2 | bi-rev-syl 81 | . 2 ⊢ ganai brode gi brodi |
4 | 1, 3 | syl 20 | 1 ⊢ ganai broda gi brodi |
Colors of variables: sumti selbri bridi |
This theorem was proved from axioms: ax-mp 10 ax-k 11 ax-s 15 ax-ge-le 43 ax-ge-re 44 ax-ge-in 45 |
This theorem depends on definitions: df-go 61 |
This theorem is referenced by: sylanbrc 85 |
Copyright terms: Public domain | W3C validator |