| brismu bridi |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > Home > Th. List > sylibr | |||
| Description: Apply a definition to a consequent. (Contributed by la korvo, 22-Jun-2024.) |
| Ref | Expression |
|---|---|
| sylibr.0 | ⊢ ganai broda gi brode |
| sylibr.1 | ⊢ go brodi gi brode |
| Ref | Expression |
|---|---|
| sylibr | ⊢ ganai broda gi brodi |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sylibr.0 | . 2 ⊢ ganai broda gi brode | |
| 2 | sylibr.1 | . . 3 ⊢ go brodi gi brode | |
| 3 | 2 | bi-rev-syl 103 | . 2 ⊢ ganai brode gi brodi |
| 4 | 1, 3 | syl 21 | 1 ⊢ ganai broda gi brodi |
| Colors of variables: sumti selbri bridi |
| This theorem was proved from axioms: ax-mp 10 ax-k 11 ax-s 15 ax-ge-le 48 ax-ge-re 49 ax-ge-in 50 |
| This theorem depends on definitions: df-go 83 |
| This theorem is referenced by: sylanbrc 107 |
| Copyright terms: Public domain | W3C validator |