![]() |
brismu bridi |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > Home > Th. List > ge-prod |
Description: All binary products exist. (Contributed by la korvo, 22-Jun-2024.) |
Ref | Expression |
---|---|
ge-prod.0 | ⊢ ganai broda gi brode |
ge-prod.1 | ⊢ ganai broda gi brodi |
Ref | Expression |
---|---|
ge-prod | ⊢ ganai broda gi ge brode gi brodi |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ge-prod.0 | . 2 ⊢ ganai broda gi brode | |
2 | ge-prod.1 | . 2 ⊢ ganai broda gi brodi | |
3 | ax-ge-in 50 | . 2 ⊢ ganai brode gi ganai brodi gi ge brode gi brodi | |
4 | 1, 2, 3 | sylc 35 | 1 ⊢ ganai broda gi ge brode gi brodi |
Colors of variables: sumti selbri bridi |
Syntax hints: ge bge 47 |
This theorem was proved from axioms: ax-mp 10 ax-k 11 ax-s 15 ax-ge-in 50 |
This theorem is referenced by: sylanbrc 107 ga-dist-ge 182 ge-dist-ex 431 |
Copyright terms: Public domain | W3C validator |