Home brismu bridi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >   Home  >  Th. List  >  syl2im

Theorem syl2im 28
Description: Replace two antecedents in parallel. (Contributed by la korvo, 31-Jul-2023.)
Hypotheses
Ref Expression
syl2im.0ganai broda gi brode
syl2im.1ganai brodi gi brodo
syl2im.2ganai brode gi ganai brodo gi brodu
Assertion
Ref Expression
syl2imganai broda gi ganai brodi gi brodu

Proof of Theorem syl2im
StepHypRef Expression
1 syl2im.0 . 2ganai broda gi brode
2 syl2im.1 . . 3ganai brodi gi brodo
3 syl2im.2 . . 3ganai brode gi ganai brodo gi brodu
42, 3syl5 27 . 2ganai brode gi ganai brodi gi brodu
51, 4syl 18 1ganai broda gi ganai brodi gi brodu
Colors of variables: sumti selbri bridi
Syntax hints:  ganai bgan 9
This theorem was proved from axioms:  ax-mp 10  ax-k 11  ax-s 14
This theorem is referenced by:  sylc  30
  Copyright terms: Public domain W3C validator