brismu bridi |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > Home > Th. List > syl2im |
Description: Replace two antecedents in parallel. (Contributed by la korvo, 31-Jul-2023.) |
Ref | Expression |
---|---|
syl2im.0 | ⊢ ganai broda gi brode |
syl2im.1 | ⊢ ganai brodi gi brodo |
syl2im.2 | ⊢ ganai brode gi ganai brodo gi brodu |
Ref | Expression |
---|---|
syl2im | ⊢ ganai broda gi ganai brodi gi brodu |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | syl2im.0 | . 2 ⊢ ganai broda gi brode | |
2 | syl2im.1 | . . 3 ⊢ ganai brodi gi brodo | |
3 | syl2im.2 | . . 3 ⊢ ganai brode gi ganai brodo gi brodu | |
4 | 2, 3 | syl5 27 | . 2 ⊢ ganai brode gi ganai brodi gi brodu |
5 | 1, 4 | syl 18 | 1 ⊢ ganai broda gi ganai brodi gi brodu |
Colors of variables: sumti selbri bridi |
Syntax hints: ganai bgan 9 |
This theorem was proved from axioms: ax-mp 10 ax-k 11 ax-s 14 |
This theorem is referenced by: sylc 30 |
Copyright terms: Public domain | W3C validator |