Home brismu bridi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >   Home  >  Th. List  >  sylcom

Theorem sylcom 23
Description: A syllogism which shuffles antecedents. (Contributed by la korvo, 30-Jul-2023.)
Hypotheses
Ref Expression
sylcom.0ganai broda gi ganai brode gi brodi
sylcom.1ganai brode gi ganai brodi gi brodo
Assertion
Ref Expression
sylcomganai broda gi ganai brode gi brodo

Proof of Theorem sylcom
StepHypRef Expression
1 sylcom.0 . 2ganai broda gi ganai brode gi brodi
2 sylcom.1 . . 3ganai brode gi ganai brodi gi brodo
32si 16 . 2ganai ganai brode gi brodi gi ganai brode gi brodo
41, 3syl 20 1ganai broda gi ganai brode gi brodo
Colors of variables: sumti selbri bridi
Syntax hints:  ganai bgan 9
This theorem was proved from axioms:  ax-mp 10  ax-k 11  ax-s 15
This theorem is referenced by:  syl6  24  syl5com  27
  Copyright terms: Public domain W3C validator