| brismu bridi |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > Home > Th. List > mpdd | |||
| Description: Nested form of mpd 18 (Contributed by la korvo, 31-Jul-2023.) |
| Ref | Expression |
|---|---|
| mpdd.0 | ⊢ ganai broda gi ganai brode gi brodi |
| mpdd.1 | ⊢ ganai broda gi ganai brode gi ganai brodi gi brodo |
| Ref | Expression |
|---|---|
| mpdd | ⊢ ganai broda gi ganai brode gi brodo |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mpdd.0 | . 2 ⊢ ganai broda gi ganai brode gi brodi | |
| 2 | mpdd.1 | . . 3 ⊢ ganai broda gi ganai brode gi ganai brodi gi brodo | |
| 3 | 2 | sd 22 | . 2 ⊢ ganai broda gi ganai ganai brode gi brodi gi ganai brode gi brodo |
| 4 | 1, 3 | mpd 18 | 1 ⊢ ganai broda gi ganai brode gi brodo |
| Colors of variables: sumti selbri bridi |
| Syntax hints: ganai bgan 9 |
| This theorem was proved from axioms: ax-mp 10 ax-k 11 ax-s 15 |
| This theorem is referenced by: syl6c 26 |
| Copyright terms: Public domain | W3C validator |