brismu bridi |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > Home > Th. List > syl6c |
Description: A contractive variant of syl6 24 (Contributed by la korvo, 31-Jul-2023.) |
Ref | Expression |
---|---|
syl6c.0 | ⊢ ganai broda gi ganai brode gi brodi |
syl6c.1 | ⊢ ganai broda gi ganai brode gi brodo |
syl6c.2 | ⊢ ganai brodi gi ganai brodo gi brodu |
Ref | Expression |
---|---|
syl6c | ⊢ ganai broda gi ganai brode gi brodu |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | syl6c.1 | . 2 ⊢ ganai broda gi ganai brode gi brodo | |
2 | syl6c.0 | . . 3 ⊢ ganai broda gi ganai brode gi brodi | |
3 | syl6c.2 | . . 3 ⊢ ganai brodi gi ganai brodo gi brodu | |
4 | 2, 3 | syl6 24 | . 2 ⊢ ganai broda gi ganai brode gi ganai brodo gi brodu |
5 | 1, 4 | mpdd 22 | 1 ⊢ ganai broda gi ganai brode gi brodu |
Colors of variables: sumti selbri bridi |
Syntax hints: ganai bgan 9 |
This theorem was proved from axioms: ax-mp 10 ax-k 11 ax-s 15 |
This theorem is referenced by: syldd 38 isodd 70 |
Copyright terms: Public domain | W3C validator |