| brismu bridi |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > Home > Th. List > syl6c | |||
| Description: A contractive variant of syl6 25 (Contributed by la korvo, 31-Jul-2023.) |
| Ref | Expression |
|---|---|
| syl6c.0 | ⊢ ganai broda gi ganai brode gi brodi |
| syl6c.1 | ⊢ ganai broda gi ganai brode gi brodo |
| syl6c.2 | ⊢ ganai brodi gi ganai brodo gi brodu |
| Ref | Expression |
|---|---|
| syl6c | ⊢ ganai broda gi ganai brode gi brodu |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | syl6c.1 | . 2 ⊢ ganai broda gi ganai brode gi brodo | |
| 2 | syl6c.0 | . . 3 ⊢ ganai broda gi ganai brode gi brodi | |
| 3 | syl6c.2 | . . 3 ⊢ ganai brodi gi ganai brodo gi brodu | |
| 4 | 2, 3 | syl6 25 | . 2 ⊢ ganai broda gi ganai brode gi ganai brodo gi brodu |
| 5 | 1, 4 | mpdd 23 | 1 ⊢ ganai broda gi ganai brode gi brodu |
| Colors of variables: sumti selbri bridi |
| Syntax hints: ganai bgan 9 |
| This theorem was proved from axioms: ax-mp 10 ax-k 11 ax-s 15 |
| This theorem is referenced by: syldd 40 isodd 92 |
| Copyright terms: Public domain | W3C validator |