brismu bridi |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > Home > Th. List > syldd |
Description: Deduction form of syld (future) (Contributed by la korvo, 1-Jan-2025.) |
Ref | Expression |
---|---|
syldd.1 | ⊢ ganai broda gi ganai brode gi ganai brodi gi brodo |
syldd.2 | ⊢ ganai broda gi ganai brode gi ganai brodo gi brodu |
Ref | Expression |
---|---|
syldd | ⊢ ganai broda gi ganai brode gi ganai brodi gi brodu |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | syldd.2 | . 2 ⊢ ganai broda gi ganai brode gi ganai brodo gi brodu | |
2 | syldd.1 | . 2 ⊢ ganai broda gi ganai brode gi ganai brodi gi brodo | |
3 | imim2 37 | . 2 ⊢ ganai ganai brodo gi brodu gi ganai ganai brodi gi brodo gi ganai brodi gi brodu | |
4 | 1, 2, 3 | syl6c 25 | 1 ⊢ ganai broda gi ganai brode gi ganai brodi gi brodu |
Colors of variables: sumti selbri bridi |
Syntax hints: ganai bgan 9 |
This theorem was proved from axioms: ax-mp 10 ax-k 11 ax-s 15 |
This theorem is referenced by: syl5d 39 |
Copyright terms: Public domain | W3C validator |