| brismu bridi |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > Home > Th. List > syl5d | |||
| Description: Deduction form of syl5 32 (Contributed by la korvo, 1-Jan-2025.) |
| Ref | Expression |
|---|---|
| syl5d.1 | ⊢ ganai broda gi ganai brode gi brodi |
| syl5d.2 | ⊢ ganai broda gi ganai brodo gi ganai brodi gi brodu |
| Ref | Expression |
|---|---|
| syl5d | ⊢ ganai broda gi ganai brodo gi ganai brode gi brodu |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | syl5d.1 | . . 3 ⊢ ganai broda gi ganai brode gi brodi | |
| 2 | 1 | kd 27 | . 2 ⊢ ganai broda gi ganai brodo gi ganai brode gi brodi |
| 3 | syl5d.2 | . 2 ⊢ ganai broda gi ganai brodo gi ganai brodi gi brodu | |
| 4 | 2, 3 | syldd 40 | 1 ⊢ ganai broda gi ganai brodo gi ganai brode gi brodu |
| Colors of variables: sumti selbri bridi |
| Syntax hints: ganai bgan 9 |
| This theorem was proved from axioms: ax-mp 10 ax-k 11 ax-s 15 |
| This theorem is referenced by: syl9 42 imim12d 44 |
| Copyright terms: Public domain | W3C validator |