![]() |
brismu bridi |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > Home > Th. List > imim12d |
Description: A deduction interleaving two implications. (Contributed by la korvo, 15-Jul-2025.) |
Ref | Expression |
---|---|
imim12d.0 | ⊢ ganai broda gi ganai brode gi brodi |
imim12d.1 | ⊢ ganai broda gi ganai brodo gi brodu |
Ref | Expression |
---|---|
imim12d | ⊢ ganai broda gi ganai ganai brodi gi brodo gi ganai brode gi brodu |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | imim12d.0 | . 2 ⊢ ganai broda gi ganai brode gi brodi | |
2 | imim12d.1 | . . 3 ⊢ ganai broda gi ganai brodo gi brodu | |
3 | 2 | ganai-comp-rld 38 | . 2 ⊢ ganai broda gi ganai ganai brodi gi brodo gi ganai brodi gi brodu |
4 | 1, 3 | syl5d 41 | 1 ⊢ ganai broda gi ganai ganai brodi gi brodo gi ganai brode gi brodu |
Colors of variables: sumti selbri bridi |
Syntax hints: ganai bgan 9 |
This theorem was proved from axioms: ax-mp 10 ax-k 11 ax-s 15 |
This theorem is referenced by: ganai-comp-lrd 45 |
Copyright terms: Public domain | W3C validator |