brismu bridi |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > Home > Th. List > isodd |
Description: Double deduction form of iso 65 (Contributed by la korvo, 31-Jul-2023.) |
Ref | Expression |
---|---|
isodd.0 | ⊢ ganai broda gi ganai brode gi ganai brodi gi brodo |
isodd.1 | ⊢ ganai broda gi ganai brode gi ganai brodo gi brodi |
Ref | Expression |
---|---|
isodd | ⊢ ganai broda gi ganai brode gi go brodi gi brodo |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | isodd.0 | . 2 ⊢ ganai broda gi ganai brode gi ganai brodi gi brodo | |
2 | isodd.1 | . 2 ⊢ ganai broda gi ganai brode gi ganai brodo gi brodi | |
3 | bi3 68 | . 2 ⊢ ganai ganai brodi gi brodo gi ganai ganai brodo gi brodi gi go brodi gi brodo | |
4 | 1, 2, 3 | syl6c 25 | 1 ⊢ ganai broda gi ganai brode gi go brodi gi brodo |
Colors of variables: sumti selbri bridi |
Syntax hints: ganai bgan 9 go bgo 60 |
This theorem was proved from axioms: ax-mp 10 ax-k 11 ax-s 15 ax-ge-re 44 ax-ge-in 45 |
This theorem depends on definitions: df-go 61 |
This theorem is referenced by: isod-lem 71 |
Copyright terms: Public domain | W3C validator |