| brismu bridi |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > Home > Th. List > isodd | |||
| Description: Double deduction form of iso 87 (Contributed by la korvo, 31-Jul-2023.) |
| Ref | Expression |
|---|---|
| isodd.0 | ⊢ ganai broda gi ganai brode gi ganai brodi gi brodo |
| isodd.1 | ⊢ ganai broda gi ganai brode gi ganai brodo gi brodi |
| Ref | Expression |
|---|---|
| isodd | ⊢ ganai broda gi ganai brode gi go brodi gi brodo |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | isodd.0 | . 2 ⊢ ganai broda gi ganai brode gi ganai brodi gi brodo | |
| 2 | isodd.1 | . 2 ⊢ ganai broda gi ganai brode gi ganai brodo gi brodi | |
| 3 | bi3 90 | . 2 ⊢ ganai ganai brodi gi brodo gi ganai ganai brodo gi brodi gi go brodi gi brodo | |
| 4 | 1, 2, 3 | syl6c 26 | 1 ⊢ ganai broda gi ganai brode gi go brodi gi brodo |
| Colors of variables: sumti selbri bridi |
| Syntax hints: ganai bgan 9 go bgo 82 |
| This theorem was proved from axioms: ax-mp 10 ax-k 11 ax-s 15 ax-ge-re 49 ax-ge-in 50 |
| This theorem depends on definitions: df-go 83 |
| This theorem is referenced by: isod-lem 93 |
| Copyright terms: Public domain | W3C validator |