Home brismu bridi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >   Home  >  Th. List  >  isodd

Theorem isodd 70
Description: Double deduction form of iso 65 (Contributed by la korvo, 31-Jul-2023.)
Hypotheses
Ref Expression
isodd.0ganai broda gi ganai brode gi ganai brodi gi brodo
isodd.1ganai broda gi ganai brode gi ganai brodo gi brodi
Assertion
Ref Expression
isoddganai broda gi ganai brode gi go brodi gi brodo

Proof of Theorem isodd
StepHypRef Expression
1 isodd.0 . 2ganai broda gi ganai brode gi ganai brodi gi brodo
2 isodd.1 . 2ganai broda gi ganai brode gi ganai brodo gi brodi
3 bi3 68 . 2ganai ganai brodi gi brodo gi ganai ganai brodo gi brodi gi go brodi gi brodo
41, 2, 3syl6c 25 1ganai broda gi ganai brode gi go brodi gi brodo
Colors of variables: sumti selbri bridi
Syntax hints:  ganai bgan 9  go bgo 60
This theorem was proved from axioms:  ax-mp 10  ax-k 11  ax-s 15  ax-ge-re 44  ax-ge-in 45
This theorem depends on definitions:  df-go 61
This theorem is referenced by:  isod-lem  71
  Copyright terms: Public domain W3C validator