brismu bridi |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > Home > Th. List > isod-lem |
Description: Lemma for isod 62 known as theorem impbid21d in [ILE] p. 0. (Contributed by la korvo, 31-Jul-2023.) |
Ref | Expression |
---|---|
isod-lem.0 | ⊢ ganai brode gi ganai brodi gi brodo |
isod-lem.1 | ⊢ ganai broda gi ganai brodo gi brodi |
Ref | Expression |
---|---|
isod-lem | ⊢ ganai broda gi ganai brode gi go brodi gi brodo |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | isod-lem.0 | . . 3 ⊢ ganai brode gi ganai brodi gi brodo | |
2 | 1 | ki 12 | . 2 ⊢ ganai broda gi ganai brode gi ganai brodi gi brodo |
3 | isod-lem.1 | . . 3 ⊢ ganai broda gi ganai brodo gi brodi | |
4 | 3 | kd 24 | . 2 ⊢ ganai broda gi ganai brode gi ganai brodo gi brodi |
5 | 2, 4 | isodd 60 | 1 ⊢ ganai broda gi ganai brode gi go brodi gi brodo |
Colors of variables: sumti selbri bridi |
Syntax hints: ganai bgan 9 |
This theorem was proved from axioms: ax-mp 10 ax-k 11 ax-s 14 ax-ge-re 35 ax-ge-in 36 |
This theorem depends on definitions: df-go 52 |
This theorem is referenced by: isod 62 |
Copyright terms: Public domain | W3C validator |