brismu bridi |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > Home > Th. List > isod |
Description: Deduction form of iso 65 (Contributed by la korvo, 31-Jul-2023.) |
Ref | Expression |
---|---|
isod.0 | ⊢ ganai broda gi ganai brode gi brodi |
isod.1 | ⊢ ganai broda gi ganai brodi gi brode |
Ref | Expression |
---|---|
isod | ⊢ ganai broda gi go brode gi brodi |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | isod.0 | . . 3 ⊢ ganai broda gi ganai brode gi brodi | |
2 | isod.1 | . . 3 ⊢ ganai broda gi ganai brodi gi brode | |
3 | 1, 2 | isod-lem 71 | . 2 ⊢ ganai broda gi ganai broda gi go brode gi brodi |
4 | 3 | ganai-abs 32 | 1 ⊢ ganai broda gi go brode gi brodi |
Colors of variables: sumti selbri bridi |
Syntax hints: go bgo 60 |
This theorem was proved from axioms: ax-mp 10 ax-k 11 ax-s 15 ax-ge-re 44 ax-ge-in 45 |
This theorem depends on definitions: df-go 61 |
This theorem is referenced by: go-com-lem 74 subid 394 |
Copyright terms: Public domain | W3C validator |