| brismu bridi |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > Home > Th. List > isod | |||
| Description: Deduction form of iso 87 (Contributed by la korvo, 31-Jul-2023.) |
| Ref | Expression |
|---|---|
| isod.0 | ⊢ ganai broda gi ganai brode gi brodi |
| isod.1 | ⊢ ganai broda gi ganai brodi gi brode |
| Ref | Expression |
|---|---|
| isod | ⊢ ganai broda gi go brode gi brodi |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | isod.0 | . . 3 ⊢ ganai broda gi ganai brode gi brodi | |
| 2 | isod.1 | . . 3 ⊢ ganai broda gi ganai brodi gi brode | |
| 3 | 1, 2 | isod-lem 93 | . 2 ⊢ ganai broda gi ganai broda gi go brode gi brodi |
| 4 | 3 | ganai-abs 34 | 1 ⊢ ganai broda gi go brode gi brodi |
| Colors of variables: sumti selbri bridi |
| Syntax hints: go bgo 82 |
| This theorem was proved from axioms: ax-mp 10 ax-k 11 ax-s 15 ax-ge-re 49 ax-ge-in 50 |
| This theorem depends on definitions: df-go 83 |
| This theorem is referenced by: go-com-lem 96 subid 452 |
| Copyright terms: Public domain | W3C validator |