Home brismu bridi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >   Home  >  Th. List  >  isod

Theorem isod 62
Description: Deduction form of iso 56 Theorem impbid in [ILE] p. 0. (Contributed by la korvo, 31-Jul-2023.)
Hypotheses
Ref Expression
isod.0ganai broda gi ganai brode gi brodi
isod.1ganai broda gi ganai brodi gi brode
Assertion
Ref Expression
isodganai broda gi go brode gi brodi

Proof of Theorem isod
StepHypRef Expression
1 isod.0 . . 3ganai broda gi ganai brode gi brodi
2 isod.1 . . 3ganai broda gi ganai brodi gi brode
31, 2isod-lem 61 . 2ganai broda gi ganai broda gi go brode gi brodi
43ganai-abs 29 1ganai broda gi go brode gi brodi
Colors of variables: sumti selbri bridi
Syntax hints:  go bgo 51
This theorem was proved from axioms:  ax-mp 10  ax-k 11  ax-s 14  ax-ge-re 35  ax-ge-in 36
This theorem depends on definitions:  df-go 52
This theorem is referenced by:  go-com-lem  64  subid  355
  Copyright terms: Public domain W3C validator