![]() |
brismu bridi |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > Home > Th. List > subid |
Description: An identity for substitutions. (Contributed by la korvo, 22-Jun-2024.) |
Ref | Expression |
---|---|
subid | ⊢ go [ da / da ] broda gi broda |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | du-refl 256 | . . 3 ⊢ da du da | |
2 | subeq-lem1 450 | . . . 4 ⊢ ganai da du da gi ganai broda gi [ da / da ] broda | |
3 | subeq-lem2 451 | . . . 4 ⊢ ganai da du da gi ganai [ da / da ] broda gi broda | |
4 | 2, 3 | isod 94 | . . 3 ⊢ ganai da du da gi go broda gi [ da / da ] broda |
5 | 1, 4 | ax-mp 10 | . 2 ⊢ go broda gi [ da / da ] broda |
6 | 5 | go-comi 98 | 1 ⊢ go [ da / da ] broda gi broda |
Colors of variables: sumti selbri bridi |
Syntax hints: go bgo 82 du sbdu 250 [ bsub 446 |
This theorem was proved from axioms: ax-mp 10 ax-k 11 ax-s 15 ax-ge-le 48 ax-ge-re 49 ax-ge-in 50 ax-gen1 224 ax-gen2 227 ax-spec1 228 ax-qi2 239 ax-eb 418 ax-eq 420 |
This theorem depends on definitions: df-go 83 df-o 198 df-du 251 df-sub 447 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |