Home brismu bridi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >   Home  >  Th. List  >  subid

Theorem subid 394
Description: An identity for substitutions. (Contributed by la korvo, 22-Jun-2024.)
Assertion
Ref Expression
subidgo [ da / da ] broda gi broda

Proof of Theorem subid
StepHypRef Expression
1 du-refl 220 . . 3da du da
2 subeq-lem1 392 . . . 4ganai da du da gi ganai broda gi [ da / da ] broda
3 subeq-lem2 393 . . . 4ganai da du da gi ganai [ da / da ] broda gi broda
42, 3isod 72 . . 3ganai da du da gi go broda gi [ da / da ] broda
51, 4ax-mp 10 . 2go broda gi [ da / da ] broda
65go-comi 76 1go [ da / da ] broda gi broda
Colors of variables: sumti selbri bridi
Syntax hints:  go bgo 60  du sbdu 214  [ bsub 388
This theorem was proved from axioms:  ax-mp 10  ax-k 11  ax-s 15  ax-ge-le 43  ax-ge-re 44  ax-ge-in 45  ax-gen1 193  ax-gen2 195  ax-spec1 196  ax-qi2 204  ax-eb 381  ax-eq 383
This theorem depends on definitions:  df-go 61  df-o 167  df-du 215  df-sub 389
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator