brismu bridi |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > Home > Th. List > subid |
Description: An identity for substitutions. Theorem sbid in [ILE] p. 0. (Contributed by la korvo, 22-Jun-2024.) |
Ref | Expression |
---|---|
subid | ⊢ go [ da / da ] broda gi broda |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | du-refl 202 | . . 3 ⊢ da du da | |
2 | subeq-lem1 353 | . . . 4 ⊢ ganai da du da gi ganai broda gi [ da / da ] broda | |
3 | subeq-lem2 354 | . . . 4 ⊢ ganai da du da gi ganai [ da / da ] broda gi broda | |
4 | 2, 3 | isod 62 | . . 3 ⊢ ganai da du da gi go broda gi [ da / da ] broda |
5 | 1, 4 | ax-mp 10 | . 2 ⊢ go broda gi [ da / da ] broda |
6 | 5 | go-comi 66 | 1 ⊢ go [ da / da ] broda gi broda |
Colors of variables: sumti selbri bridi |
Syntax hints: go bgo 51 du sbdu 196 [ bsub 349 |
This theorem was proved from axioms: ax-mp 10 ax-k 11 ax-s 14 ax-ge-le 34 ax-ge-re 35 ax-ge-in 36 ax-gen1 179 ax-gen2 180 ax-spec1 181 ax-qi2 188 ax-eb 343 ax-eq 345 |
This theorem depends on definitions: df-go 52 df-o 153 df-du 197 df-sub 350 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |