Home brismu bridi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >   Home  >  Th. List  >  subid

Theorem subid 355
Description: An identity for substitutions. Theorem sbid in [ILE] p. 0. (Contributed by la korvo, 22-Jun-2024.)
Assertion
Ref Expression
subidgo [ da / da ] broda gi broda

Proof of Theorem subid
StepHypRef Expression
1 du-refl 202 . . 3da du da
2 subeq-lem1 353 . . . 4ganai da du da gi ganai broda gi [ da / da ] broda
3 subeq-lem2 354 . . . 4ganai da du da gi ganai [ da / da ] broda gi broda
42, 3isod 62 . . 3ganai da du da gi go broda gi [ da / da ] broda
51, 4ax-mp 10 . 2go broda gi [ da / da ] broda
65go-comi 66 1go [ da / da ] broda gi broda
Colors of variables: sumti selbri bridi
Syntax hints:  go bgo 51  du sbdu 196  [ bsub 349
This theorem was proved from axioms:  ax-mp 10  ax-k 11  ax-s 14  ax-ge-le 34  ax-ge-re 35  ax-ge-in 36  ax-gen1 179  ax-gen2 180  ax-spec1 181  ax-qi2 188  ax-eb 343  ax-eq 345
This theorem depends on definitions:  df-go 52  df-o 153  df-du 197  df-sub 350
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator