Home brismu bridi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >   Home  >  Th. List  >  go-id

Theorem go-id 63
Description: {go} is reflexive. Theorem equid in [ILE] p. 0. (Contributed by la korvo, 30-Jul-2023.)
Assertion
Ref Expression
go-idgo broda gi broda

Proof of Theorem go-id
StepHypRef Expression
1 id 17 . 2ganai broda gi broda
2 id 17 . 2ganai broda gi broda
31, 2iso 56 1go broda gi broda
Colors of variables: sumti selbri bridi
This theorem was proved from axioms:  ax-mp 10  ax-k 11  ax-s 14  ax-ge-re 35  ax-ge-in 36
This theorem depends on definitions:  df-go 52
This theorem is referenced by:  o-refl  158  du-refl  202
  Copyright terms: Public domain W3C validator