Home brismu bridi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >   Home  >  Th. List  >  o-refl

Theorem o-refl 172
Description: {.o} is reflexive over any brirebla. (Contributed by la korvo, 14-Aug-2024.)
Assertion
Ref Expression
o-reflko'a .o ko'a bo'a

Proof of Theorem o-refl
StepHypRef Expression
1 go-id 73 . 2go ko'a bo'a gi ko'a bo'a
21ori 169 1ko'a .o ko'a bo'a
Colors of variables: sumti selbri bridi
Syntax hints:  btb 3
This theorem was proved from axioms:  ax-mp 10  ax-k 11  ax-s 15  ax-ge-le 43  ax-ge-re 44  ax-ge-in 45
This theorem depends on definitions:  df-go 61  df-o 167
This theorem is referenced by:  dunli-refl  332  mintu-refl  339
  Copyright terms: Public domain W3C validator