| brismu bridi |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > Home > Th. List > ori | |||
| Description: Reverse inference form of df-o 198 (Contributed by la korvo, 9-Aug-2023.) |
| Ref | Expression |
|---|---|
| ori.0 | ⊢ go ko'a bo'a gi ko'e bo'a |
| Ref | Expression |
|---|---|
| ori | ⊢ ko'a .o ko'e bo'a |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ori.0 | . 2 ⊢ go ko'a bo'a gi ko'e bo'a | |
| 2 | df-o 198 | . 2 ⊢ go ko'a .o ko'e bo'a gi go ko'a bo'a gi ko'e bo'a | |
| 3 | 1, 2 | bi-rev 102 | 1 ⊢ ko'a .o ko'e bo'a |
| Colors of variables: sumti selbri bridi |
| Syntax hints: btb 3 go bgo 82 .o sjo 197 |
| This theorem was proved from axioms: ax-mp 10 ax-k 11 ax-s 15 ax-ge-le 48 ax-ge-re 49 ax-ge-in 50 |
| This theorem depends on definitions: df-go 83 df-o 198 |
| This theorem is referenced by: o-refl 203 simsa-mintu 379 |
| Copyright terms: Public domain | W3C validator |