Home brismu bridi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >   Home  >  Th. List  >  dunli-refl

Theorem dunli-refl 295
Description: {dunli} is reflexive over any dunli3. (Contributed by la korvo, 14-Aug-2024.)
Assertion
Ref Expression
dunli-reflko'a dunli ko'a ko'e

Proof of Theorem dunli-refl
StepHypRef Expression
1 o-refl 158 . 2ko'a .o ko'a ckini ko'o ko'e
21dunliri 294 1ko'a dunli ko'a ko'e
Colors of variables: sumti selbri bridi
Syntax hints:  tsb 1  tss 2  ckini sbckini 273
This theorem was proved from axioms:  ax-mp 10  ax-k 11  ax-s 14  ax-ge-le 34  ax-ge-re 35  ax-ge-in 36
This theorem depends on definitions:  df-go 52  df-o 153  df-dunli 292
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator