![]() |
brismu bridi |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > Home > Th. List > dunli-refl |
Description: {dunli} is reflexive over any dunli3. (Contributed by la korvo, 14-Aug-2024.) |
Ref | Expression |
---|---|
dunli-refl | ⊢ ko'a dunli ko'a ko'e |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | o-refl 203 | . 2 ⊢ ko'a .o ko'a ckini ko'o ko'e | |
2 | 1 | dunliri 368 | 1 ⊢ ko'a dunli ko'a ko'e |
Colors of variables: sumti selbri bridi |
Syntax hints: tsb 1 tss 2 ckini sbckini 347 |
This theorem was proved from axioms: ax-mp 10 ax-k 11 ax-s 15 ax-ge-le 48 ax-ge-re 49 ax-ge-in 50 |
This theorem depends on definitions: df-go 83 df-o 198 df-dunli 366 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |