| brismu bridi |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > Home > Th. List > mintu-refl | |||
| Description: {mintu} is reflexive over any mintu3. (Contributed by la korvo, 14-Aug-2024.) |
| Ref | Expression |
|---|---|
| mintu-refl | ⊢ ko'a mintu ko'a ko'e |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | o-refl 203 | . 2 ⊢ ko'a .o ko'a ckaji ko'e | |
| 2 | 1 | minturi 375 | 1 ⊢ ko'a mintu ko'a ko'e |
| Colors of variables: sumti selbri bridi |
| Syntax hints: tsb 1 tss 2 ckaji sbckaji 342 |
| This theorem was proved from axioms: ax-mp 10 ax-k 11 ax-s 15 ax-ge-le 48 ax-ge-re 49 ax-ge-in 50 |
| This theorem depends on definitions: df-go 83 df-o 198 df-mintu 373 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |