Home brismu bridi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >   Home  >  Th. List  >  mintu-refl

Theorem mintu-refl 339
Description: {mintu} is reflexive over any mintu3. (Contributed by la korvo, 14-Aug-2024.)
Assertion
Ref Expression
mintu-reflko'a mintu ko'a ko'e

Proof of Theorem mintu-refl
StepHypRef Expression
1 o-refl 172 . 2ko'a .o ko'a ckaji ko'e
21minturi 338 1ko'a mintu ko'a ko'e
Colors of variables: sumti selbri bridi
Syntax hints:  tsb 1  tss 2  ckaji sbckaji 305
This theorem was proved from axioms:  ax-mp 10  ax-k 11  ax-s 15  ax-ge-le 43  ax-ge-re 44  ax-ge-in 45
This theorem depends on definitions:  df-go 61  df-o 167  df-mintu 336
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator